Time-frequency analysis for bearing fault diagnosis using multiple Q-factor Gabor wavelets.

作者: Xin Zhang , Zhiwen Liu , Jiaxu Wang , Jinglin Wang

DOI: 10.1016/J.ISATRA.2018.11.033

关键词: Computer scienceBearing (mechanical)Continuous waveletMorlet waveletGabor waveletArtificial intelligenceContinuous wavelet transformPattern recognitionTime–frequency analysisWavelet transformFault (power engineering)

摘要: Abstract Rolling element bearings are key and also vulnerable machine elements in rotating machinery. Fault diagnosis of rolling is significant for guaranteeing machinery safety functionality. To accurately extract bearing diagnostic information, a time–frequency analysis method based on continuous wavelet transform (CWT) multiple Q-factor Gabor wavelets (MQGWs) (termed CMQGWT) introduced this paper. In the CMQGWT method, with Q-factors adopted sets coefficients each combined to generate map. By way, resolution CWT map can be greatly increased information identified. Numerical simulation carried out verified effectiveness proposed method. Case studies comparisons Morlet (CMWT) tunable (TQWT) demonstrate superiority extraction fault identification.

参考文章(40)
J. González-Nuevo, F. Argüeso, M. López-Caniego, L. Toffolatti, J. L. Sanz, P. Vielva, D. Herranz, The Mexican Hat Wavelet Family. Application to point source detection in CMB maps arXiv: Astrophysics. ,(2006) , 10.1111/J.1365-2966.2006.10442.X
M. López-Caniego, M. López-Caniego, F. Argüeso, L. Toffolatti, J. L. Sanz, J. González-Nuevo, D. Herranz, P. Vielva, The Mexican hat wavelet family : application to point-source detection in cosmic microwave background maps Monthly Notices of the Royal Astronomical Society. ,vol. 369, pp. 1603- 1610 ,(2006) , 10.1111/J.1365-2966.2006.10442.X
Robert B. Randall, Jérôme Antoni, Rolling element bearing diagnostics—A tutorial Mechanical Systems and Signal Processing. ,vol. 25, pp. 485- 520 ,(2011) , 10.1016/J.YMSSP.2010.07.017
Jeevanand Seshadrinath, Bhim Singh, Bijaya Ketan Panigrahi, Investigation of Vibration Signatures for Multiple Fault Diagnosis in Variable Frequency Drives Using Complex Wavelets IEEE Transactions on Power Electronics. ,vol. 29, pp. 936- 945 ,(2014) , 10.1109/TPEL.2013.2257869
JING LIN, LIANGSHENG QU, Feature Extraction Based on Morlet Wavelet and its Application for Mechanical Fault Diagnosis Journal of Sound and Vibration. ,vol. 234, pp. 135- 148 ,(2000) , 10.1006/JSVI.2000.2864
B Liu, S.F Ling, R Gribonval, Bearing failure detection using matching pursuit Ndt & E International. ,vol. 35, pp. 255- 262 ,(2002) , 10.1016/S0963-8695(01)00063-9
Jian-Da Wu, Jien-Chen Chen, Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines NDT & E International. ,vol. 39, pp. 304- 311 ,(2006) , 10.1016/J.NDTEINT.2005.09.002
B Vishwash, P Srinivasa Pai, NS Sriram, Rounaq Ahmed, HS Kumar, GS Vijay, None, Multiscale Slope Feature Extraction for Gear and Bearing Fault Diagnosis Using Wavelet Transform Procedia Materials Science. ,vol. 5, pp. 1650- 1659 ,(2014) , 10.1016/J.MSPRO.2014.07.353
CÉdric Vonesch, Thierry Blu, Michael Unser, Generalized Daubechies Wavelet Families IEEE Transactions on Signal Processing. ,vol. 55, pp. 4415- 4429 ,(2007) , 10.1109/TSP.2007.896255