Radiogenomic Analysis of Oncological Data: A Technical Survey.

作者: Mariarosaria Incoronato , Marco Aiello , Teresa Infante , Carlo Cavaliere , Anna Grimaldi

DOI: 10.3390/IJMS18040805

关键词: GenomicsInstrumentation (computer programming)Data analysisRadiogenomicsBioinformaticsData scienceAnalysis methodMedicineRadiomics

摘要: In the last few years, biomedical research has been boosted by technological development of analytical instrumentation generating a large volume data. Such information increased in complexity from basic (i.e., blood samples) to extensive sets encompassing many aspects subject phenotype, and now rapidly extending into genetic and, more recently, radiomic information. Radiogenomics integrates both aspects, investigating relationship between imaging features gene expression. From methodological point view, radiogenomics takes advantage non-conventional data analysis techniques that reveal meaningful for decision-support cancer diagnosis treatment. This survey is aimed review state-of-the-art employed radiomics genomics with special focus on methods based molecular multimodal probes. The impact single combined will be discussed light their suitability correlation predictive studies specific oncologic diseases.

参考文章(149)
Chintan Parmar, Patrick Grossmann, Johan Bussink, Philippe Lambin, Hugo J. W. L. Aerts, Machine Learning methods for Quantitative Radiomic Biomarkers Scientific Reports. ,vol. 5, pp. 13087- 13087 ,(2015) , 10.1038/SREP13087
Mizuki Nishino, Mengye Guo, David M. Jackman, Pamela J. DiPiro, Jeffrey T. Yap, Tak K. Ho, Hiroto Hatabu, Pasi A. Jänne, Annick D. Van den Abbeele, Bruce E. Johnson, CT tumor volume measurement in advanced non-small-cell lung cancer: Performance characteristics of an emerging clinical tool. Academic Radiology. ,vol. 18, pp. 54- 62 ,(2011) , 10.1016/J.ACRA.2010.08.021
Wentian Guo, Hui Li, Yitan Zhu, Li Lan, Shengjie Yang, Karen Drukker, Elizabeth Morris, Elizabeth Burnside, Gary Whitman, Maryellen L Giger, Yuan Ji, TCGA Breast Phenotype Research Group, None, Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. Journal of medical imaging. ,vol. 2, pp. 041007- 041007 ,(2015) , 10.1117/1.JMI.2.4.041007
David A Gutman, William D Dunn, Patrick Grossmann, Lee AD Cooper, Chad A Holder, Keith L Ligon, Brian M Alexander, Hugo JWL Aerts, Somatic mutations associated with MRI-derived volumetric features in glioblastoma Neuroradiology. ,vol. 57, pp. 1227- 1237 ,(2015) , 10.1007/S00234-015-1576-7
Elizabeth J. Sutton, Jung Hun Oh, Brittany Z. Dashevsky, Harini Veeraraghavan, Aditya P. Apte, Sunitha B. Thakur, Joseph O. Deasy, Elizabeth A. Morris, Breast cancer subtype intertumor heterogeneity: MRI‐based features predict results of a genomic assay Journal of Magnetic Resonance Imaging. ,vol. 42, pp. 1398- 1406 ,(2015) , 10.1002/JMRI.24890
Neema Jamshidi, Eric Jonasch, Matthew Zapala, Ronald L. Korn, Lejla Aganovic, Hongjuan Zhao, Raviprakash Tumkur Sitaram, Robert J. Tibshirani, Sudeep Banerjee, James D. Brooks, Borje Ljungberg, Michael D. Kuo, The Radiogenomic Risk Score: Construction of a Prognostic Quantitative, Noninvasive Image-based Molecular Assay for Renal Cell Carcinoma. Radiology. ,vol. 277, pp. 114- 123 ,(2015) , 10.1148/RADIOL.2015150800
Jeffrey C Weinreb, Jelle O Barentsz, Peter L Choyke, Francois Cornud, Masoom A Haider, Katarzyna J Macura, Daniel Margolis, Mitchell D Schnall, Faina Shtern, Clare M Tempany, Harriet C Thoeny, Sadna Verma, None, PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2 European Urology. ,vol. 69, pp. 16- 40 ,(2016) , 10.1016/J.EURURO.2015.08.052
Jerome H. Friedman, On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality Data Mining and Knowledge Discovery. ,vol. 1, pp. 55- 77 ,(1997) , 10.1023/A:1009778005914
Maciej A. Mazurowski, Radiogenomics: what it is and why it is important. Journal of The American College of Radiology. ,vol. 12, pp. 862- 866 ,(2015) , 10.1016/J.JACR.2015.04.019
Arvind Rao, Ganesh Rao, David A. Gutman, Adam E. Flanders, Scott N. Hwang, Daniel L. Rubin, Rivka R. Colen, Pascal O. Zinn, Rajan Jain, Max Wintermark, Justin S. Kirby, C. Carl Jaffe, John Freymann, _ _, A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma. Journal of Neurosurgery. ,vol. 124, pp. 1008- 1017 ,(2016) , 10.3171/2015.4.JNS142732