P -values in genomics: Apparent precision masks high uncertainty

作者: L C Lazzeroni , Y Lu , I Belitskaya-Lévy

DOI: 10.1038/MP.2013.184

关键词: BiologyContext (language use)Relative strengthStatistical hypothesis testingSample size determinationVariable (computer science)Initial value problemPrediction intervalStatisticsReplication (statistics)

摘要: Scientists often interpret P-values as measures of the relative strength statistical findings. This is common practice in large-scale genomic studies where are used to choose which numerous hypothesis test results should be pursued subsequent research. In this study, we examine P-value variability assess degree certainty provide. We develop prediction intervals for a replication study given observed an initial study. The depend on value P and ratio sample sizes between studies, but not underlying effect size or size. valid most large-sample tests any context, can presence single multiple tests. While highly variable, future explicitly predicted based from important predictor provide handy calculator implementing these apply them Alzheimer's disease recent findings Cross-Disorder Group Psychiatric Genomics Consortium. suggests that overinterpretation very significant, factor contributing unexpectedly high incidence non-replication. Formal also realistic interpretations comparisons associated with different estimated sizes.

参考文章(28)
Majid Mojirsheibani, Robert Tibshirani, Some results on bootstrap prediction intervals Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 24, pp. 549- 568 ,(1996) , 10.2307/3315333
Laura C. Lazzeroni, Kenneth Lange, A Conditional Inference Framework for Extending the Transmission/Disequilibrium Test Human Heredity. ,vol. 48, pp. 67- 81 ,(1998) , 10.1159/000022784
Daniel Davies, Asking for more The Lancet. ,vol. 359, pp. 1627- ,(2002) , 10.1016/S0140-6736(02)08487-8
Laura C. Lazzeroni, Amrita Ray, A Generalized Defries–Fulker Regression Framework for the Analysis of Twin Data Behavior Genetics. ,vol. 43, pp. 85- 96 ,(2013) , 10.1007/S10519-012-9573-7
David P. Harrington, The Randomized Clinical Trial Journal of the American Statistical Association. ,vol. 95, pp. 312- 315 ,(2000) , 10.1080/01621459.2000.10473931
L C Lazzeroni, A Ray, The cost of large numbers of hypothesis tests on power, effect size and sample size. Molecular Psychiatry. ,vol. 17, pp. 108- 114 ,(2012) , 10.1038/MP.2010.117
Dennis D. Boos, Leonard A. Stefanski, P-Value Precision and Reproducibility The American Statistician. ,vol. 65, pp. 213- 221 ,(2011) , 10.1198/TAS.2011.10129
Clara C. Elbers, Kristel R. van Eijk, Lude Franke, Flip Mulder, Yvonne T. van der Schouw, Cisca Wijmenga, N. Charlotte Onland-Moret, Using genome-wide pathway analysis to unravel the etiology of complex diseases Genetic Epidemiology. ,vol. 33, pp. 419- 431 ,(2009) , 10.1002/GEPI.20395
Rita M. Cantor, Kenneth Lange, Janet S. Sinsheimer, Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application American Journal of Human Genetics. ,vol. 86, pp. 6- 22 ,(2010) , 10.1016/J.AJHG.2009.11.017