作者: J.C. Bezdek , R.J. Hathaway
DOI: 10.1109/FUZZY.2004.1375677
关键词: Data mining 、 FLAME clustering 、 Fuzzy clustering 、 Data stream clustering 、 CURE data clustering algorithm 、 Canopy clustering algorithm 、 Fuzzy set 、 Cluster analysis 、 Mathematics 、 Correlation clustering 、 Algorithm
摘要: The extensible fast fuzzy c-means algorithm (eFFCM) finds clusters in very large digital images. eFFCM identifies a representative subsample of the image, which is then clustered using (FCM) algorithm. solution extended to secure an approximate clustering remaining pixels image. This article discusses generalized (geFFCM), extension general non-image data. Our accelerates literal (LFCM) on all (loadable) data sets. Second, geFFCM provides feasibility - way find (approximate) for sets that are too be loaded single computer. experiments suggest chi-squared or divergence test goodness fit alone good subsamples. new subsampling method should equally effective acceleration and with VL by any (not just FCM).