Partitioning random graphs into large cycles

作者: A.M. Frieze

DOI: 10.1016/0012-365X(88)90089-1

关键词: Random graphMathematicsDiscrete mathematicsCombinatoricsAsymptotic distributionRandom regular graph

摘要: Abstract Let r ⩾ 1 be a fixed positive integer. We give the limiting distribution for probability that vertices of random graph can partitioned equitably into cycles.

参考文章(13)
Colin McDiarmid, Clutter percolation and random graphs Mathematical Programming Studies. pp. 17- 25 ,(1980) , 10.1007/BFB0120903
T.I Fenner, A.M Frieze, Hamiltonian Cycles in Random Regular Graphs Journal of Combinatorial Theory, Series B. ,vol. 37, pp. 103- 112 ,(1984) , 10.1016/0095-8956(84)90066-2
B Bollobás, T I Fenner, A M Frieze, An algorithm for finding Hamilton cycles in random graphs Proceedings of the seventeenth annual ACM symposium on Theory of computing - STOC '85. pp. 430- 439 ,(1985) , 10.1145/22145.22193
L. Pósa, Hamiltonian circuits in random graphs Discrete Mathematics. ,vol. 14, pp. 359- 364 ,(1976) , 10.1016/0012-365X(76)90068-6
A.M Frieze, Finding hamilton cycles in sparse random graphs Journal of Combinatorial Theory, Series B. ,vol. 44, pp. 230- 250 ,(1988) , 10.1016/0095-8956(88)90089-5
A. M. Frieze, On the exact solution of random travelling salesman problems with medium size integer coefficients SIAM Journal on Computing. ,vol. 16, pp. 1052- 1072 ,(1987) , 10.1137/0216068
T.I. Fenner, A.M. Frieze, On the existence of Hamiltonian cycles in a class of random graphs Discrete Mathematics. ,vol. 45, pp. 301- 305 ,(1983) , 10.1016/0012-365X(83)90046-8
A.M Frieze, On large matchings and cycles in sparse random graphs Discrete Mathematics. ,vol. 59, pp. 243- 256 ,(1986) , 10.1016/0012-365X(86)90171-8
János Komlós, Endre Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a random graph Discrete Mathematics. ,vol. 306, pp. 1032- 1038 ,(1983) , 10.1016/0012-365X(83)90021-3