Morphology: from sharp interface to phase field models

作者: Robert F. Sekerka

DOI: 10.1016/J.JCRYSGRO.2003.12.033

关键词: Mathematical analysisPhysicsPartial differential equationStefan problemCurvatureMethod of characteristicsGibbs–Thomson equationField (physics)IsotropyThermodynamicsPhase field models

摘要: … by the solution in the entire computational domain of coupled partial differential equations for thermal and compositional fields and for an auxiliary variable that keeps track of the phase. …

参考文章(58)
Robert F. Sekerka, Fundamentals of phase field theory Advances in Crystal Growth Research. pp. 21- 41 ,(2001) , 10.1016/B978-044450747-1/50029-6
Frank S. Ham, Shape-preserving solutions of the time-dependent diffusion equation Quarterly of Applied Mathematics. ,vol. 17, pp. 137- 145 ,(1959) , 10.1090/QAM/108196
Ch. Charach, C. K. Chen, P. C. Fife, Developments in Phase-Field Modeling of Thermoelastic and Two-Component Materials Journal of Statistical Physics. ,vol. 95, pp. 1141- 1164 ,(1999) , 10.1023/A:1004566820463
C. Charach, P. C. Fife, On Thermodynamically Consistent Schemes for Phase Field Equations Open Systems & Information Dynamics. ,vol. 5, pp. 99- 123 ,(1998) , 10.1023/A:1009652531731
G.B. McFadden, A.A. Wheeler, D.M. Anderson, Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities Physica D: Nonlinear Phenomena. ,vol. 144, pp. 154- 168 ,(2000) , 10.1016/S0167-2789(00)00064-6