Critical behavior ofm-component magnets with correlated impurities

作者: Daniel Boyanovsky , John L. Cardy

DOI: 10.1103/PHYSREVB.26.154

关键词: Scaling lawMathematical physicsExponentPhysicsCritical phenomenaImpurityCritical point (thermodynamics)Spin systemCondensed matter physicsRenormalization groupCritical exponent

摘要: We study the critical behavior of an $m$-component classical spin system with quenched impurities correlated along ${\ensuremath{\epsilon}}_{d}$-dimensional "line" and randomly distributed in $d\ensuremath{-}{\ensuremath{\epsilon}}_{d}$ dimensions ($d=4\ensuremath{-}\ensuremath{\epsilon}$). The presence this line makes anisotropic interactions highly nonlocal. renormalization group (RG) is used to approach region quantities interest are calculated a double $\ensuremath{\epsilon}$, ${\ensuremath{\epsilon}}_{d}$ expansion. A two-loop calculation needed expose fully divergent structure, theory proved be renormalizable up order. consequence expansion fact that RG functions consequently exponents depend on ratio $\frac{{\ensuremath{\epsilon}}_{d}}{(\ensuremath{\epsilon}+{\ensuremath{\epsilon}}_{d})}$. solution equations leads existence two correlation lengths: parallel perpendicular it, ${\ensuremath{\nu}}_{\ensuremath{\parallel}}$ ${\ensuremath{\nu}}_{\ensuremath{\perp}}$, respectively, relation ${\ensuremath{\nu}}_{\ensuremath{\parallel}}=z{\ensuremath{\nu}}_{\ensuremath{\perp}}$. exponent $z$ results from anisotropy system. New scaling laws found for exponents: $\ensuremath{\gamma}={\ensuremath{\nu}}_{\ensuremath{\perp}}(2\ensuremath{-}\ensuremath{\eta})$ $\ensuremath{\alpha}=2\ensuremath{-}(d\ensuremath{-}{\ensuremath{\epsilon}}_{d}){\ensuremath{\nu}}_{\ensuremath{\perp}}\ensuremath{-}{\ensuremath{\epsilon}}_{d}{\ensuremath{\nu}}_{\ensuremath{\parallel}}$. establish between our model quantum one less dimension random pointlike impurities. For we predict quantum-to-classical crossover at finite temperature cross-over ${\ensuremath{\nu}}_{\ensuremath{\parallel}}^{\ensuremath{-}1}$.

参考文章(11)
G. Grinstein, A. Luther, Application of the renormalization group to phase transitions in disordered systems Physical Review B. ,vol. 13, pp. 1329- 1343 ,(1976) , 10.1103/PHYSREVB.13.1329
A. Brooks Harris, T. C. Lubensky, Renormalization-Group Approach to the Critical Behavior of Random-Spin Models Physical Review Letters. ,vol. 33, pp. 1540- 1543 ,(1974) , 10.1103/PHYSREVLETT.33.1540
T. C. Lubensky, Critical properties of random-spin models from the ∊ expansion Physical Review B. ,vol. 11, pp. 3573- 3580 ,(1975) , 10.1103/PHYSREVB.11.3573
Kenneth G. Wilson, Michael E. Fisher, Critical Exponents in 3.99 Dimensions Physical Review Letters. ,vol. 28, pp. 240- 243 ,(1972) , 10.1103/PHYSREVLETT.28.240
A B Harris, Effect of random defects on the critical behaviour of Ising models Journal of Physics C: Solid State Physics. ,vol. 7, pp. 1671- 1692 ,(1974) , 10.1088/0022-3719/7/9/009
C.G. Bollini, J.J. Giambiagi, Lowest order “divergent” graphs in v-dimensional space Physics Letters B. ,vol. 40, pp. 566- 568 ,(1972) , 10.1016/0370-2693(72)90483-2
J. B. Bronzan, Jan W. Dash, Higher-order ∊ terms in Reggeon field theory Physical Review D. ,vol. 10, pp. 4208- 4217 ,(1974) , 10.1103/PHYSREVD.10.4208
John A. Hertz, Quantum critical phenomena Physical Review B. ,vol. 14, pp. 1165- 1184 ,(1976) , 10.1103/PHYSREVB.14.1165