Chemical Composition Design of Superalloys for Maximum Stress, Temperature, and Time-to-Rupture Using Self-Adapting Response Surface Optimization

作者: Igor N. Egorov-Yegorov , George S. Dulikravich

DOI: 10.1081/AMP-200053592

关键词: Stress (mechanics)SuperalloyMaterials scienceMulti-objective optimizationMathematical optimizationMaterial DesignInverse problemAustenitic stainless steelEvolutionary algorithmAlloy

摘要: ABSTRACT We have adapted an advanced semistochastic evolutionary algorithm for constrained multiobjective optimization and combined it with experimental testing verification to determine optimum concentrations of alloying elements in heat-resistant austenitic stainless steel alloys superalloys that will simultaneously maximize a number the alloy's mechanical properties. The allows finite ingredients alloy be optimized so physical properties are either minimized or maximized, while satisfying equality inequality constraints. Alternatively, inverse design method was developed, which uses same chemical compositions able sustain specified level stress at given temperature length time. main benefits self-adapting response surface its outstanding reliability a...

参考文章(20)
D. J. C. Mackay, H. K. D. H. Bhadeshia, A. Y. Badmos, Tensile properties of mechanically alloyed oxide dispersion strengthened iron alloys Part 1 - Neural networkmodels Materials Science and Technology. ,vol. 14, pp. 793- 809 ,(1998) , 10.1179/026708398790301016
Carlo Poloni, Andrea Giurgevich, Luka Onesti, Valentino Pediroda, Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics Computer Methods in Applied Mechanics and Engineering. ,vol. 186, pp. 403- 420 ,(2000) , 10.1016/S0045-7825(99)00394-1
I. N. Egorov, Optimization of a Multistage Axial Compressor Stochastic Approach ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. ,(1992) , 10.1115/92-GT-163
I. N. Egorov, G. V. Kretinin, Search for compromise solution of the multistage axial compressor's stochastic optimization problem Journal of Thermal Science. ,vol. 7, pp. 218- 225 ,(1998) , 10.1007/S11630-998-0030-0
Hidetoshi Fujii, D. J. C. Mackay, H. K. D. H. Bhadeshia, Bayesian Neural Network Analysis of Fatigue Crack Growth Rate in Nickel Base Superalloys Isij International. ,vol. 36, pp. 1373- 1382 ,(1996) , 10.2355/ISIJINTERNATIONAL.36.1373
Brian H. Dennis, George S. Dulikravich, Optimization of magneto-hydrodynamic control of diffuser flows using micro-genetic algorithms and least-squares finite elements Finite Elements in Analysis and Design. ,vol. 37, pp. 349- 363 ,(2001) , 10.1016/S0168-874X(00)00052-4
N. Chakraborti, Genetic algorithms in materials design and processing International Materials Reviews. ,vol. 49, pp. 246- 260 ,(2004) , 10.1179/095066004225021909
I. N. Egorov, G. V. Kretinin, Optimization of Gas Turbine Engine Elements by Probability Criteria Volume 3A: General. ,(1993) , 10.1115/93-GT-191
I.M. Sobol, Uniformly distributed sequences with an additional uniform property USSR Computational Mathematics and Mathematical Physics. ,vol. 16, pp. 236- 242 ,(1976) , 10.1016/0041-5553(76)90154-3