Conductive olfactory losses in chronic rhinosinusitis? A computational fluid dynamics study of 29 patients

作者: Kai Zhao , Jianbo Jiang , Edmund A. Pribitkin , Pamela Dalton , David Rosen

DOI: 10.1002/ALR.21272

关键词: RhinomanometryAcoustic rhinometryOlfactory RegionSinusitisGastroenterologySensory thresholdPathologyOlfactory epitheliumOlfactory mucosaInternal medicineMedicineOdor

摘要: Background Besides sensorineural factors, conductive impediments likely contribute to olfactory losses in chronic rhinosinusitis (CRS) patients, yet no conclusive evidence exists. We aimed examine possible factors using computational fluid dynamics (CFD) models. Methods A total of 29 CRS patients were assessed via odorant detection thresholds (ODTs), rhinomanometry (nasal resistance [NR]), acoustic rhinometry (minimum-cross-sectional area [MCA]) and computed tomography (CT) staging. CFD simulations nasal airflow absorption region carried out based on individual CTs. Biopsies epithelium (OE) collected, cryosectioned, stained, scored for erosion. Results Significant correlations ODTs found 3 variables: odor the (r = −0.60, p < 0.01), MCA −0.40, 0.05), CT staging 0.42, 0.05). However, significant findings limited highly soluble l-carvone. Multiple regression analysis revealed that these variables combined, with addition NR, can account 65% variance ODTs. correlated significantly OE erosion 0.77, 0.01) replace latter comparable outcomes. Partial suggest contributions both are more prominent if adjusted effects other. Olfactory loss inflammatory have strong bilateral involvement, whereas independent between sides. As validation, CFD-simulated NRs rhinomanometrically 0.60, 0.01). Conclusion Both mechanisms CRS. modeling provides critical guidance understanding role dysfunction

参考文章(56)
Dubravko Manestar, R Tićac, Sven Maričić, Goran Malvić, Davor Čorak, Marcel Marjanović Kavanagh, Drago Prgomet, Radan Starčević, Amount of airflow required for olfactory perception in laryngectomees: a prospective interventional study. Clinical Otolaryngology. ,vol. 37, pp. 28- 34 ,(2012) , 10.1111/J.1749-4486.2012.02442.X
Charles E. Wicks, Robert E. Wilson, James R. Welty, Fundamentals of momentum, heat, and mass transfer ,(1969)
Ravi.P. Subramaniam, Regina.B. Richardson, Kevin.T. Morgan, Julia.S. Kimbell, Raymond.A. Guilmette, COMPUTATIONAL FLUID DYNAMICS SIMULATIONS OF INSPIRATORY AIRFLOW IN THE HUMAN NOSE AND NASOPHARYNX Inhalation Toxicology. ,vol. 10, pp. 91- 120 ,(1998) , 10.1080/089583798197772
I. Hahn, P. W. Scherer, M. M. Mozell, Velocity profiles measured for airflow through a large-scale model of the human nasal cavity Journal of Applied Physiology. ,vol. 75, pp. 2273- 2287 ,(1993) , 10.1152/JAPPL.1993.75.5.2273
Richard L. Doty, Anupam Mishra, Olfaction and Its Alteration by Nasal Obstruction, Rhinitis, and Rhinosinusitis Laryngoscope. ,vol. 111, pp. 409- 423 ,(2001) , 10.1097/00005537-200103000-00008
R GLIKLICH, R METSON, The Health Impact of Chronic Sinusitis in Patients Seeking Otolaryngologic Care Otolaryngology-Head and Neck Surgery. ,vol. 113, pp. 104- 109 ,(1995) , 10.1016/S0194-5998(95)70152-4
Karen K. Yee, Edmund A. Pribitkin, Beverly J. Cowart, Aldona A. Vainius, Christopher T. Klock, David Rosen, Pu Feng, Judith McLean, Chang-Gyu Hahn, Nancy E. Rawson, Neuropathology of the olfactory mucosa in chronic rhinosinusitis. American Journal of Rhinology & Allergy. ,vol. 24, pp. 110- 120 ,(2010) , 10.2500/AJRA.2010.24.3435
Donald A. Leopold, The relationship between nasal anatomy and human olfaction Laryngoscope. ,vol. 98, pp. 1232- 1238 ,(1988) , 10.1288/00005537-198811000-00015
Ronald Eccles, Nasal airflow in health and disease Acta Oto-laryngologica. ,vol. 120, pp. 580- 595 ,(2000) , 10.1080/000164800750000388
Karen K. Yee, Edmund A. Pribitkin, Beverly J. Cowart, David Rosen, Pu Feng, Nancy E. Rawson, Analysis of the olfactory mucosa in chronic rhinosinusitis Annals of the New York Academy of Sciences. ,vol. 1170, pp. 590- 595 ,(2009) , 10.1111/J.1749-6632.2009.04364.X