Irreducible Hamiltonian BRST-anti-BRST symmetry for reducible systems

作者: E M Cioroianu , C Bizdadea , S O Saliu

DOI: 10.1088/0305-4470/33/39/307

关键词: Mathematical physicsFormalism (philosophy of mathematics)BRST quantizationHamiltonian (quantum mechanics)MathematicsAlgebra

摘要: An irreducible Hamiltonian BRST-anti-BRST treatment of reducible first-class systems based on homological arguments is proposed. The general formalism exemplified the Freedman-Townsend model.

参考文章(33)
Marc Henneaux, Claudio Teitelboim, None, Quantization of Gauge Systems ,(1992)
Paul Adrien Maurice Dirac, Lectures on Quantum Mechanics ,(2001)
Luis Alvarez-Gaumé, Laurent Baulieu, The two quantum symmetries associated with a classical symmetry Nuclear Physics B. ,vol. 212, pp. 255- 267 ,(1983) , 10.1016/0550-3213(83)90304-8
P Gregoire, M Henneaux, Antifield-antibracket formulation of the anti-BRST transformation Journal of Physics A. ,vol. 26, pp. 6073- 6083 ,(1993) , 10.1088/0305-4470/26/21/045
V.P. Spiridonov, SP(2)-covariant ghost fields in gauge theories Nuclear Physics. ,vol. 308, pp. 527- 543 ,(1988) , 10.1016/0550-3213(88)90576-7
Hashim A. Yamani, The equivalence of the Feshbach and J‐matrix methods Journal of Mathematical Physics. ,vol. 23, pp. 83- 86 ,(1982) , 10.1063/1.525210
I. A. Batalin, P. M. Lavrov, I. V. Tyutin, An Sp(2)‐covariant version of generalized canonical quantization of dynamical systems with linearly dependent constraints Journal of Mathematical Physics. ,vol. 31, pp. 2708- 2717 ,(1990) , 10.1063/1.528973
C. M. HULL, THE BRST AND ANTI-BRST INVARIANT QUANTIZATION OF GENERAL GAUGE THEORIES Modern Physics Letters A. ,vol. 05, pp. 1871- 1881 ,(1990) , 10.1142/S0217732390002122