Object of interest detection by saliency learning

作者: Pattaraporn Khuwuthyakorn , Antonio Robles-Kelly , Jun Zhou , None

DOI: 10.1007/978-3-642-15552-9_46

关键词: Object (computer science)Feature vectorSegmentationSupport vector machineArtificial intelligenceComputer scienceSalientLinear separabilityComputer visionConditional random fieldStructured prediction

摘要: In this paper, we present a method for object of interest detection. This is statistical in nature and hinges model which combines salient features using mixture linear support vector machines. It exploits divide-and-conquer strategy by partitioning the feature space into sub-regions linearly separable data-points. yields structured learning approach where learn machine each region, weights, combination parameters at hand. Thus, learns such that classifiers can be used to recover objects image. We illustrate utility applying our algorithm MSRA Salient Object Database.

参考文章(31)
Jorma Rissanen, Stochastic Complexity in Statistical Inquiry Theory World Scientific Publishing Co., Inc.. ,(1989)
Christof Koch, Shimon Ullman, Shifts in selective visual attention: towards the underlying neural circuitry. Human neurobiology. ,vol. 4, pp. 219- 227 ,(1987) , 10.1007/978-94-009-3833-5_5
J. Freixenet, X. Muñoz, D. Raba, J. Martí, X. Cufí, Yet Another Survey on Image Segmentation: Region and Boundary Information Integration european conference on computer vision. pp. 408- 422 ,(2002) , 10.1007/3-540-47977-5_27
G. Rätsch, T. Onoda, K.-R. Müller, Soft Margins for AdaBoost Machine Learning. ,vol. 42, pp. 287- 320 ,(2001) , 10.1023/A:1007618119488
Constantine Papageorgiou, Tomaso Poggio, A Trainable System for Object Detection International Journal of Computer Vision. ,vol. 38, pp. 15- 33 ,(2000) , 10.1023/A:1008162616689
Timor Kadir, Michael Brady, Saliency, Scale and Image Description International Journal of Computer Vision. ,vol. 45, pp. 83- 105 ,(2001) , 10.1023/A:1012460413855
John G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of The Optical Society of America A-optics Image Science and Vision. ,vol. 2, pp. 1160- 1169 ,(1985) , 10.1364/JOSAA.2.001160
Hongliang Li, King N. Ngan, Saliency model-based face segmentation and tracking in head-and-shoulder video sequences Journal of Visual Communication and Image Representation. ,vol. 19, pp. 320- 333 ,(2008) , 10.1016/J.JVCIR.2008.04.001
Paul L. Rosin, A simple method for detecting salient regions Pattern Recognition. ,vol. 42, pp. 2363- 2371 ,(2009) , 10.1016/J.PATCOG.2009.04.021