作者: Pattaraporn Khuwuthyakorn , Antonio Robles-Kelly , Jun Zhou , None
DOI: 10.1007/978-3-642-15552-9_46
关键词: Object (computer science) 、 Feature vector 、 Segmentation 、 Support vector machine 、 Artificial intelligence 、 Computer science 、 Salient 、 Linear separability 、 Computer vision 、 Conditional random field 、 Structured prediction
摘要: In this paper, we present a method for object of interest detection. This is statistical in nature and hinges model which combines salient features using mixture linear support vector machines. It exploits divide-and-conquer strategy by partitioning the feature space into sub-regions linearly separable data-points. yields structured learning approach where learn machine each region, weights, combination parameters at hand. Thus, learns such that classifiers can be used to recover objects image. We illustrate utility applying our algorithm MSRA Salient Object Database.