Folding the Dragon Curve Fractal

作者: Natalija Budinski and Miroslav Novta

DOI:

关键词: FractalGeometryFolding (DSP implementation)Dragon curveMathematics

摘要:

参考文章(7)
Raymond Siegrist, Inquiry into fractals Mathematics Teacher: Learning and Teaching PK–12. ,vol. 103, pp. 206- 212 ,(2009) , 10.5951/MT.103.3.0206
Michael Fraboni, Trisha Moller, Fractals in the Classroom Mathematics Teacher: Learning and Teaching PK–12. ,vol. 102, pp. 197- 199 ,(2008) , 10.5951/MT.102.3.0197
David Hilbert, S. Cohn-Vossen, Geometry and the imagination ,(1952)
Geoffrey Irving, Henry Segerman, Developing fractal curves Journal of Mathematics and the Arts. ,vol. 7, pp. 103- 121 ,(2013) , 10.1080/17513472.2013.852399
Sergei Tabachnikov, Dragon Curves Revisited The Mathematical Intelligencer. ,vol. 36, pp. 13- 17 ,(2014) , 10.1007/S00283-013-9428-Y
Lokenath Debnath *, A brief historical introduction to fractals and fractal geometry International Journal of Mathematical Education in Science and Technology. ,vol. 37, pp. 29- 50 ,(2006) , 10.1080/00207390500186206
Benoit B. Mandelbrot, The Fractal Geometry of Nature ,(1982)