An Exact Formula for Pricing American Exchange Options with Regime Switching

作者: Leunglung Chan

DOI: 10.1007/978-1-4899-7442-6_9

关键词: UnobservableGeometric Brownian motionEconomicsRegime switchingExact formulaHidden markov processVolatility (finance)Mathematical economics

摘要: This paper investigates the pricing of American exchange options when price dynamics each underlying risky asset are assumed to follow a Markov-modulated Geometric Brownian motion; that is, appreciation rate and volatility depend on unobservable states economy described by continuous-time hidden Markov process. We show an option can be reduced option. Then, we modify result Zhu Chan (An analytic formula for with regime switching. Submitted publication, 2012), closed-form analytical is given.

参考文章(35)
John Buffington, Robert J. Elliott, Regime Switching and European Options Springer, Berlin, Heidelberg. pp. 73- 82 ,(2002) , 10.1007/3-540-48022-6_5
Robert J Elliott, Lakhdar Aggoun, John B Moore, Hidden Markov Models: Estimation and Control ,(1994)
Robert C. Merton, Theory of rational option pricing ,(2011)
M. A. H. Dempster, S. S. G. Hong, Spread Option Valuation and the Fast Fourier Transform Springer Finance. pp. 203- 220 ,(2002) , 10.1007/978-3-662-12429-1_10
JOHN BUFFINGTON, ROBERT J. ELLIOTT, American options with regime switching International Journal of Theoretical and Applied Finance. ,vol. 05, pp. 497- 514 ,(2002) , 10.1142/S0219024902001523
Aanand Venkatramanan, Carol Alexander, None, Closed Form Approximations for Spread Options Applied Mathematical Finance. ,vol. 18, pp. 447- 472 ,(2011) , 10.1080/1350486X.2011.567120
Fei Lung Yuen, Hailiang Yang, Option Pricing in a Jump-Diffusion Model with Regime Switching Astin Bulletin. ,vol. 39, pp. 515- 539 ,(2009) , 10.2143/AST.39.2.2044646
Robert J. Elliott, John van der Hoek, An application of hidden Markov models to asset allocation problems Finance and Stochastics. ,vol. 1, pp. 229- 238 ,(1997) , 10.1007/S007800050022