Gene Expression Data from the Moon Jelly, Aurelia, Provide Insights into the Evolution of the Combinatorial Code Controlling Animal Sense Organ Development

作者: Nagayasu Nakanishi , Anthony C. Camara , David C. Yuan , David A. Gold , David K. Jacobs

DOI: 10.1371/JOURNAL.PONE.0132544

关键词: PAX6Evolutionary developmental biologyEumetazoaPax genesGeneticsRhopaliumBiologyBilateriaEye developmentSense organ

摘要: In Bilateria, Pax6, Six, Eya and Dach families of transcription factors underlie the development evolution morphologically phyletically distinct eyes, including compound eyes in Drosophila camera-type vertebrates, indicating that bilaterian evolved under strong influence ancestral developmental gene regulation. However conservation eye genetics deeper Eumetazoa, origin conserved regulatory apparatus controlling remain unclear due to limited comparative data from Cnidaria. Here we show eye-bearing scyphozoan cnidarian Aurelia ectodermal photosensory domain developing medusa sensory structure known as rhopalium expresses sine oculis (so)/six1/2 absent/eya, but not optix/six3/6 or pax (A&B). addition, so eya co-expression encompasses region active cell proliferation, neurogenesis, mechanoreceptor rhopalia. Consistent with role rhopalial development, transcriptome across life cycle stages upregulation eya, optix (A&B), during formation. Moreover, pax6 dach are absent genome, thus required for Aurelia. Our consistent optix, dach, having functions specification Eumetazoa. The lability components Pax genes relative so-eya is a model sense organ involved lineage specific modification combinatorial code specifies animal organs.

参考文章(70)
H. Suga, P. Tschopp, D. F. Graziussi, M. Stierwald, V. Schmid, W. J. Gehring, Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish Proceedings of the National Academy of Sciences of the United States of America. ,vol. 107, pp. 14263- 14268 ,(2010) , 10.1073/PNAS.1008389107
Jürgen Schmich, Rüdiger Rudolf, Stefan Trepel, T. Leitz, Immunohistochemical studies of GLWamides in Cnidaria. Cell and Tissue Research. ,vol. 294, pp. 169- 177 ,(1998) , 10.1007/S004410051167
Elsa Denker, Michaël Manuel, Lucas Leclère, Hervé Le Guyader, Nicolas Rabet, Ordered progression of nematogenesis from stem cells through differentiation stages in the tentacle bulb of Clytia hemisphaerica (Hydrozoa, Cnidaria). Developmental Biology. ,vol. 315, pp. 99- 113 ,(2008) , 10.1016/J.YDBIO.2007.12.023
Clare V.H. Baker, Marianne Bronner-Fraser, Vertebrate cranial placodes I. Embryonic induction. Developmental Biology. ,vol. 232, pp. 1- 61 ,(2001) , 10.1006/DBIO.2001.0156
G. A. Horridge, The Nerves and Muscles of Medusae The Journal of Experimental Biology. ,vol. 32, pp. 555- 568 ,(1955)
Sally P. Leys, Bernard M. Degnan, Cytological basis of photoresponsive behavior in a sponge larva The Biological Bulletin. ,vol. 201, pp. 323- 338 ,(2001) , 10.2307/1543611
Stéphane Guindon, Olivier Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology. ,vol. 52, pp. 696- 704 ,(2003) , 10.1080/10635150390235520
Vicki J Martin, Photoreceptors of cnidarians Canadian Journal of Zoology. ,vol. 80, pp. 1703- 1722 ,(2002) , 10.1139/Z02-136
Mark D Robinson, Davis J McCarthy, Gordon K Smyth, None, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. ,vol. 26, pp. 139- 140 ,(2010) , 10.1093/BIOINFORMATICS/BTP616