P Matrices and Solutions to a Class of Linear Inequalities

作者: Debasis Mitra , Hing C. So

DOI: 10.1137/0125002

关键词: InverseDiscrete mathematicsCombinatoricsMathematicsLambdaDiagonalLinear inequalityClass (set theory)

摘要: The main results of the paper are on pairs real $n \times n$ matrices with all off diagonal elements nonpositive. Necessary and sufficient conditions established for following two important properties, proved to be equivalent, hold a pair $(A,B)$ : (i) there exists solution $\lambda \in R^n $ set linear inequalities ^t > 0$, A B 0$; (ii) inverse $( {AD_1 + BD_2 } )$ nonnegative every $D_1 $D_2 such that {D_1 D_2 positive. in terms certain being P, class principal minors complete, finite procedure constructing is also given.

参考文章(11)
Miroslav Fiedler, Vlastimil Pták, On matrices with non-positive off-diagonal elements and positive principal minors Czechoslovak Mathematical Journal. ,vol. 12, pp. 382- 400 ,(1962) , 10.21136/CMJ.1962.100526
Morris Marden, Geometry of Polynomials ,(1970)
Hukukane Nikaido, Martin Shubik, Convex structures and economic theory ,(1968)
H. D. Block, S. A. Levin, On the boundedness of an iterative procedure for solving a system of linear inequalities Proceedings of the American Mathematical Society. ,vol. 26, pp. 229- 235 ,(1970) , 10.1090/S0002-9939-1970-0265383-5
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
I. W. Sandberg, A. N. Willson, Some Theorems on Properties of DC Equations of Nonlinear Networks Bell System Technical Journal. ,vol. 48, pp. 1- 34 ,(1969) , 10.1002/J.1538-7305.1969.TB01104.X
Emilie V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix Linear Algebra and its Applications. ,vol. 1, pp. 73- 81 ,(1968) , 10.1016/0024-3795(68)90050-5
Y-C. Ho, R. L. Kashyap, An Algorithm for Linear Inequalities and its Applications IEEE Transactions on Electronic Computers. ,vol. EC-14, pp. 683- 688 ,(1965) , 10.1109/PGEC.1965.264207
Ky Fan, Topological proofs for certain theorems on matrices with non-negative elements Monatshefte für Mathematik. ,vol. 62, pp. 219- 237 ,(1958) , 10.1007/BF01303967
James M. Ortega, Werner C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables ,(1970)