Hour-ahead wind power prediction for power systems using Hidden Markov Models and Viterbi Algorithm

作者: S Jafarzadeh , S Fadali , C Y Evrenosoglu , H Livani

DOI: 10.1109/PES.2010.5589844

关键词: SimulationPower (physics)Markov processHidden Markov modelViterbi algorithmElectric power systemAlgorithmStatistical analysisWind powerWind speedEngineering

摘要: This paper presents a new stochastic method for very short-term (1 hour) wind prediction in electrical power systems. The utilizes Hidden Markov Models (HMM) and the Viterbi Algorithm (VA). Past farm production data are required to develop HMM model. accuracy of predictions improves drastically if hourly weather forecast used as pseudo-measurements. Computer simulations using Northwestern recordings from Bonneville Power Administration (BPA) website show good correlation between our actual data.

参考文章(39)
G Giebel, C Draxl, G Kariniotakis, R Brownsword, M Denhard, The state-of-the-art in short-term prediction of wind power. A literature overview ,(2011)
Todd K. Moon, Wynn C. Stirling, Mathematical Methods and Algorithms for Signal Processing ,(1999)
P. Pinson, G.N. Katiniotakis, Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment ieee powertech conference. ,vol. 2, pp. 64- 71 ,(2003) , 10.1109/PTC.2003.1304289
Erik Lundtang Petersen, Ib Troen, European wind atlas ,(1989)
P. Meibom, M. O'Malley, A. Tuohy, E. Denny, Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power Proceedings of the 10th International Conference on Probablistic Methods Applied to Power Systems. pp. 1- 7 ,(2008)
Lars Landberg, Gregor Giebel, Henrik Aalborg Nielsen, Torben Nielsen, Henrik Madsen, Short‐term Prediction—An Overview Wind Energy. ,vol. 6, pp. 273- 280 ,(2003) , 10.1002/WE.96
Lars Landberg, Simon J. Watson, Short-term prediction of local wind conditions Boundary-Layer Meteorology. ,vol. 70, pp. 171- 195 ,(1994) , 10.1007/BF00712528
Nahi Kandil, René Wamkeue, Maarouf Saad, Semaan Georges, An efficient approach for short term load forecasting using artificial neural networks International Journal of Electrical Power & Energy Systems. ,vol. 28, pp. 525- 530 ,(2006) , 10.1016/J.IJEPES.2006.02.014
Aidan Tuohy, Eleanor Denny, Peter Meibom, Rudiger Barth, Mark O'Malley, Operating the Irish power system with increased levels of wind power power and energy society general meeting. pp. 1- 4 ,(2008) , 10.1109/PES.2008.4596389
Alma Y. Alanis, Luis J. Ricalde, Edgar N. Sanchez, High Order Neural Networks for wind speed time series prediction international joint conference on neural network. pp. 2193- 2197 ,(2009) , 10.1109/IJCNN.2009.5178893