l1-norm quantile regression screening rule via the dual circumscribed sphere

作者: Lingchen Kong , Pan Shang

DOI:

关键词: AlgorithmFeature (machine learning)OutlierQuantile functionQuantile regressionCircumscribed sphereFunction (mathematics)Computer science

摘要: l1-norm quantile regression is a common choice if there exists outlier or heavy-tailed error in high-dimensional data sets. However, it computationally expensive to solve this problem when the feature size of ultra high. As far as we know, existing screening rules can not speed up computation regression, which dues non-differentiability function/pinball loss. In paper, introduce dual circumscribed sphere technique and propose novel rule. Our rule expressed closed-form function given eliminates inactive features with low computational cost. Numerical experiments on some simulation real sets show that be used eliminate almost all features. Moreover, help reduce 23 times time, compared without our

参考文章(31)
Zhen James Xiang, Yun Wang, Peter J. Ramadge, Screening Tests for Lasso Problems IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 39, pp. 1008- 1027 ,(2017) , 10.1109/TPAMI.2016.2568185
Bradley Efron, Large-Scale Inference Cambridge University Press. ,(2010) , 10.1017/CBO9780511761362
Tarek Rabbani, Laurent El Ghaoui, Vivian Viallon, Safe Feature Elimination in Sparse Supervised Learning arXiv: Learning. ,(2010)
Vilen Jumutc, Xiaolin Huang, Johan A. K. Suykens, Fixed-size Pegasos for hinge and pinball loss SVM The 2013 International Joint Conference on Neural Networks (IJCNN). pp. 1- 7 ,(2013) , 10.1109/IJCNN.2013.6706864
Youjuan Li, Ji Zhu, L1-Norm Quantile Regression Journal of Computational and Graphical Statistics. ,vol. 17, pp. 163- 185 ,(2008) , 10.1198/106186008X289155
Bo Peng, Lan Wang, An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression Journal of Computational and Graphical Statistics. ,vol. 24, pp. 676- 694 ,(2015) , 10.1080/10618600.2014.913516
Roger Koenker, Pin Ng, A Frisch-Newton Algorithm for Sparse Quantile Regression Acta Mathematicae Applicatae Sinica. ,vol. 21, pp. 225- 236 ,(2005) , 10.1007/S10255-005-0231-1
Peter J. Huber, Robust Regression: Asymptotics, Conjectures and Monte Carlo Annals of Statistics. ,vol. 1, pp. 799- 821 ,(1973) , 10.1214/AOS/1176342503
Jie Wang, Wei Fan, Jieping Ye, Fused Lasso Screening Rules via the Monotonicity of Subdifferentials IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 37, pp. 1806- 1820 ,(2015) , 10.1109/TPAMI.2014.2388203
U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, A. J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 6745- 6750 ,(1999) , 10.1073/PNAS.96.12.6745