A numerical technique for variable-order fractional functional nonlinear dynamic systems

作者: F. Khane Keshi , B. P. Moghaddam , A. Aghili

DOI: 10.1007/S40435-019-00521-0

关键词: Applied mathematicsDiscretizationInterpolationNumerical techniqueFinite differenceVariable (mathematics)PantographMathematicsPiecewiseOrder (group theory)

摘要: This paper provides an efficient technique to discretize the variable-order fractional functional nonlinear differential equations. The proposed is based on a piecewise integro quadratic spline interpolation and finite difference approximation. To reveal performance accuracy of method, behavioral responses suitcase with two wheels pantograph models order are analyzed.

参考文章(38)
A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation Nonlinear Dynamics. ,vol. 80, pp. 101- 116 ,(2015) , 10.1007/S11071-014-1854-7
Riccardo Caponetto, Giovanni Dongola, Luigi Fortuna, Antonio Gallo, New results on the synthesis of FO-PID controllers Communications in Nonlinear Science and Numerical Simulation. ,vol. 15, pp. 997- 1007 ,(2010) , 10.1016/J.CNSNS.2009.05.040
R. H. Plaut, Rocking instability of a pulled suitcase with two wheels Acta Mechanica. ,vol. 117, pp. 165- 179 ,(1996) , 10.1007/BF01181045
Chang-Ming Chen, F. Liu, V. Anh, I. Turner, Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation Mathematics of Computation. ,vol. 81, pp. 345- 366 ,(2012) , 10.1090/S0025-5718-2011-02447-6
S. Shen, F. Liu, V. Anh, I. Turner, J. Chen, A characteristic difference method for the variable-order fractional advection-diffusion equation Journal of Applied Mathematics and Computing. ,vol. 42, pp. 371- 386 ,(2013) , 10.1007/S12190-012-0642-0
C.F.M. Coimbra, Mechanics with variable‐order differential operators Annalen der Physik. ,vol. 12, pp. 692- 703 ,(2003) , 10.1002/ANDP.200310032
The Dynamics of a Current Collection System for an Electric Locomotive Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 322, pp. 447- 468 ,(1971) , 10.1098/RSPA.1971.0078
Xiuying Li, Boying Wu, A numerical technique for variable fractional functional boundary value problems Applied Mathematics Letters. ,vol. 43, pp. 108- 113 ,(2015) , 10.1016/J.AML.2014.12.012