Predict Sepsis Level in Intensive Medicine – Data Mining Approach

作者: João M. C. Gonçalves , Filipe Portela , Manuel Filipe Santos , Álvaro Silva , José Machado

DOI: 10.1007/978-3-642-36981-0_19

关键词: Naive Bayes classifierIntensive care unitSet (abstract data type)Confusion matrixSupport vector machineData miningSupervised learningDecision treeComputer scienceIntensive care

摘要: This paper aims to support doctor’s decision-making on predicting the Sepsis level. Thus, a set of Data Mining (DM) models were developed using prevision techniques and classification models. These enable better decision having into account level patient. The DM use real data collected from Intensive Care Unit Santo Antonio Hospital, in Oporto, Portugal. Classification considered predict sepsis supervised learning approach. induced making following algorithms: Decision Trees, Support Vector Machines Naive Bayes classifier. assessed Confusion Matrix, associated metrics, Cross-validation. analysis total error rate, sensitivity, specificity accuracy metrics used identify most relevant measures work demonstrates that it is possible with great

参考文章(20)
Filipe Pinto, Filipe Portela, Manuel Filipe Santos, Data Mining Predictive Models for Pervasive Intelligent Decision Support in Intensive Care Medicine international joint conference on knowledge discovery, knowledge engineering and knowledge management. pp. 81- 88 ,(2012)
P. Tamayo, C. Berger, M. Campos, J. Yarmus, B. Milenova, A. Mozes, M. Taft, M. Hornick, R. Krishnan, S. Thomas, M. Kelly, D. Mukhin, B. Haberstroh, S. Stephens, J. Myczkowski, Oracle Data Mining Springer, Boston, MA. pp. 1315- 1329 ,(2005) , 10.1007/0-387-25465-X_63
António Abelha, Filipe Portela, Manuel Filipe Santos, Álvaro Silva, José Manuel Machado, Pedro Gago, Fernando Rua, José Neves, Knowledge discovery for pervasive and real-time intelligent decision support in intensive care medicine international joint conference on knowledge discovery knowledge engineering and knowledge management. pp. 241- 249 ,(2011)
Carlos Filipe Portela, Manuel Filipe Santos, Álvaro Silva, José Machado, António Abelha, Enabling a Pervasive Approach for Intelligent Decision Support in Critical Health Care international conference on enterprise information systems. pp. 233- 243 ,(2011) , 10.1007/978-3-642-24352-3_25
Oded Maimon, Lior Rokach, Data Mining and Knowledge Discovery Handbook ,(2005)
K HAYRINEN, K SARANTO, P NYKANEN, Definition, structure, content, use and impacts of electronic health records: A review of the research literature International Journal of Medical Informatics. ,vol. 77, pp. 291- 304 ,(2008) , 10.1016/J.IJMEDINF.2007.09.001
Pedro Gago, Manuel Filipe Santos, Alvaro Silva, Paulo Cortez, José Neves, Lopes Gomes, INTCare: a Knowledge Discovery Based Intelligent Decision Support System for Intensive Care Medicine Journal of Decision Systems. ,vol. 14, pp. 241- 259 ,(2005) , 10.3166/JDS.14.241-259
R Phillip Dellinger, Mitchell M Levy, Jean M Carlet, Julian Bion, Margaret M Parker, Roman Jaeschke, Konrad Reinhart, Derek C Angus, Christian Brun-Buisson, Richard Beale, Thierry Calandra, Jean-Francois Dhainaut, Herwig Gerlach, Maurene Harvey, John J Marini, John Marshall, Marco Ranieri, Graham Ramsay, Jonathan Sevransky, B Taylor Thompson, Sean Townsend, Jeffrey S Vender, Janice L Zimmerman, Jean-Louis Vincent, International Surviving Sepsis Campaign Guidelines Committee, None, Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008 Intensive Care Medicine. ,vol. 34, pp. 17- 60 ,(2008) , 10.1007/S00134-007-0934-2
Upkar Varshney, Pervasive healthcare and wireless health monitoring Mobile Networks and Applications. ,vol. 12, pp. 113- 127 ,(2007) , 10.1007/S11036-007-0017-1