The Mordell-Weil Theorem

作者: Kenneth Ireland , Michael Rosen

DOI: 10.1007/978-1-4757-2103-4_19

关键词: Brouwer fixed-point theoremMathematicsCalculusFactor theoremFundamental theoremAlgebraic geometryDiophantine geometryMordell–Weil theoremCompactness theoremFundamental theorem of calculus

摘要: In this chapter we prove the celebrated theorem of Mordell—Weil for elliptic curves defined over field rational numbers. Our treatment is elementary in sense that no sophisticated results from algebraic geometry are assumed. It our desire to present a self-contained important result. The significance and implications contemporary research diophantine farreaching. following summary without proofs these developments time sketched. We hope two chapters will inspire interested student continue study by consulting more comprehensive texts on arithmetic listed bibliography chapter.

参考文章(23)
J. S. Chahal, Topics in number theory ,(1988)
Joseph H. Silverman, The Arithmetic of Elliptic Curves ,(1986)
John T. Tate, Joseph H. Silverman, Rational Points on Elliptic Curves ,(1992)
Thomas J Kretschmer, Construction of elliptic curves with large rank Mathematics of Computation. ,vol. 46, pp. 627- 635 ,(1986) , 10.2307/2008002
J. W. S. Cassels, Diophantine Equations with Special Reference To Elliptic Curves Journal of The London Mathematical Society-second Series. pp. 193- 291 ,(1966) , 10.1112/JLMS/S1-41.1.193
J. E. Hofmann, Über zahlentheoretische Methoden Fermats und Eulers, ihre Zusammenhänge und ihre Bedeutung Archive for History of Exact Sciences. ,vol. 1, pp. 122- 159 ,(1960) , 10.1007/BF00327401
L. Carlitz, S. Chowla, The Riemann hypothesis and Hilbert's tenth problem American Mathematical Monthly. ,vol. 73, pp. 906- ,(1966) , 10.2307/2314216