POISSON STRUCTURE INDUCED (TOPOLOGICAL) FIELD THEORIES

作者: Peter Schaller , Thomas Strobl

DOI: 10.1142/S0217732394002951

关键词: Poisson manifoldPoisson distributionPhysicsQuantization (physics)Degenerate energy levelsClassical field theoryHamiltonian (quantum mechanics)Covariant Hamiltonian field theoryMathematical physicsCanonical quantization

摘要: A class of two-dimensional field theories, based on (generically degenerate) Poisson structures and generalizing gravity-Yang–Mills systems, is presented. Locally, the solutions classical equations motions are given. general scheme for quantization models in a Hamiltonian formulation found. BRS-formulation outlined briefly.

参考文章(5)
Bertram Kostant, Quantization and unitary representations Springer Berlin Heidelberg. pp. 87- 208 ,(1970) , 10.1007/BFB0079068
P. Schaller, T. Strobl, Quantization of field theories generalizing Gravity-Yang-Mills systems on the cylinder Lecture Notes in Physics. ,vol. 436, pp. 98- 122 ,(1994) , 10.1007/3-540-58453-6_6
J. GRABOWSKI, G. MARMO, A.M. PERELOMOV, POISSON STRUCTURES: TOWARDS A CLASSIFICATION Modern Physics Letters A. ,vol. 08, pp. 1719- 1733 ,(1993) , 10.1142/S0217732393001458
N. Ikeda, Two-Dimensional Gravity and Nonlinear Gauge Theory Annals of Physics. ,vol. 235, pp. 435- 464 ,(1994) , 10.1006/APHY.1994.1104
D. Amati, E. Rabinovici, E. Rabinovici, S. Elitzur, S. Elitzur, On induced gravity in 2d topological theories Nuclear Physics. ,vol. 418, pp. 45- 80 ,(1994) , 10.1016/0550-3213(94)90238-0