Variance-based sensitivity analysis for time-dependent processes

作者: Alen Alexanderian , Ralph C. Smith , Pierre A. Gremaud

DOI:

关键词: Applied mathematicsComputationHarmonic oscillatorMathematicsA priori and a posterioriMathematical optimizationCorrelationVariance (accounting)Nonlinear systemStructure (category theory)Variance-based sensitivity analysis

摘要: The global sensitivity analysis of time-dependent processes requires history-aware approaches. We develop for that purpose a variance-based method leverages the correlation structure problems under study and employs surrogate models to accelerate computations. errors resulting from fixing unimportant uncertain parameters their nominal values are analyzed through priori estimates. illustrate our approach on harmonic oscillator example nonlinear dynamic cholera model.

参考文章(43)
Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola, Global Sensitivity Analysis: The Primer ,(2008)
Roger G. Ghanem, Pol D. Spanos, Stochastic Finite Elements: A Spectral Approach ,(1990)
Giuseppe Da Prato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions ,(1992)
Lloyd N. Trefethen, David Bau, Numerical Linear Algebra ,(1997)
Walter Rudin, Real and complex analysis ,(1966)
Katherine Campbell, Michael D. McKay, Brian J. Williams, Sensitivity analysis when model outputs are functions Reliability Engineering & System Safety. ,vol. 91, pp. 1468- 1472 ,(2006) , 10.1016/J.RESS.2005.11.049
Art B. Owen, Better estimation of small sobol' sensitivity indices ACM Transactions on Modeling and Computer Simulation. ,vol. 23, pp. 11- ,(2013) , 10.1145/2457459.2457460
Liang Yan, Ling Guo, Dongbin Xiu, STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION International Journal for Uncertainty Quantification. ,vol. 2, pp. 279- 293 ,(2012) , 10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2012003925