Random differential equations with discrete delay

作者: J. Calatayud , J.-C. Cortés , M. Jornet

DOI: 10.1080/07362994.2019.1608833

关键词: Initial value problemMathematical analysisMathematicsDifferential equationBanach fixed-point theoremStochastic process

摘要: AbstractIn this article, we study random differential equations with discrete delay τ>0: x′(t,ω)=f(x(t,ω),x(t−τ,ω),t,ω),t≥t0, initial condition x(t,ω)=g(t,ω),t∈[t0−τ,t0]. The uncertainty in th...

参考文章(17)
Vladimir Borisovich Kolmanovskiĭ, L. E. Shaĭkhet, Control of Systems with Aftereffect ,(1996)
Shengda Liu, Amar Debbouche, JinRong Wang, On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths Journal of Computational and Applied Mathematics. ,vol. 312, pp. 47- 57 ,(2017) , 10.1016/J.CAM.2015.10.028
T. T. Soong, J. L. Bogdanoff, Random Differential Equations in Science and Engineering Journal of Applied Mechanics. ,vol. 41, pp. 1148- 1148 ,(1974) , 10.1115/1.3423466
L. Villafuerte, C.A. Braumann, J.-C. Cortés, L. Jódar, Random differential operational calculus: Theory and applications Computers & Mathematics With Applications. ,vol. 59, pp. 115- 125 ,(2010) , 10.1016/J.CAMWA.2009.08.061
J.L Strand, Random ordinary differential equations Journal of Differential Equations. ,vol. 7, pp. 538- 553 ,(1970) , 10.1016/0022-0396(70)90100-2
Vasile Lupulescu, Donal O'Regan, Ghaus ur Rahman, Existence results for random fractional differential equations Opuscula Mathematica. ,vol. 34, pp. 813- 825 ,(2014) , 10.7494/OPMATH.2014.34.4.813
F.A. Dorini, M.S. Cecconello, L.B. Dorini, On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density Communications in Nonlinear Science and Numerical Simulation. ,vol. 33, pp. 160- 173 ,(2016) , 10.1016/J.CNSNS.2015.09.009
Leonid Shaikhet, Andrei Korobeinikov, Stability of a stochastic model for HIV-1 dynamics within a host Applicable Analysis. ,vol. 95, pp. 1228- 1238 ,(2016) , 10.1080/00036811.2015.1058363