Group testing regression models with dilution submodels

作者: Md S. Warasi , Christopher S. McMahan , Joshua M. Tebbs , Christopher R. Bilder

DOI: 10.1002/SIM.7455

关键词: InferenceRegression analysisEconometricsParametric statisticsCovariateStatisticsMathematicsLikelihood-ratio testGroup testingTest dataRegression dilution

摘要: Group testing, where specimens are tested initially in pools, is widely used to screen individuals for sexually transmitted diseases. However, a common problem encountered practice that group testing can increase the number of false negative test results. This occurs primarily when positive individual within pool diluted by ones, resulting pools negatively. If goal estimate population-level regression model relating disease status observed covariates, severe bias result if an adjustment dilution not made. Recognizing this as critical issue, recent binary approaches have utilized continuous biomarker information acknowledge effect dilution. In paper, we same overall but take different approach. We augment existing models (that assume no dilution) with parametric submodel pool-level sensitivity and all parameters using maximum likelihood. An advantage our approach it does rely on external data, which may be available surveillance studies. Furthermore, unlike previous approaches, framework allows one formally whether present based data. use simulation illustrate performance estimation inference methods, apply these methods 2 infectious data sets.

参考文章(34)
Boan Zhang, Christopher R. Bilder, Joshua M. Tebbs, Group testing regression model estimation when case identification is a goal. Biometrical Journal. ,vol. 55, pp. 173- 189 ,(2013) , 10.1002/BIMJ.201200168
Aurore Delaigle, Wen-Xin Zhou, Nonparametric and Parametric Estimators of Prevalence From Group Testing Data With Aggregated Covariates Journal of the American Statistical Association. ,vol. 110, pp. 1785- 1796 ,(2015) , 10.1080/01621459.2015.1054491
Dewei Wang, Christopher S. McMahan, Colin M. Gallagher, A general regression framework for group testing data, which incorporates pool dilution effects. Statistics in Medicine. ,vol. 34, pp. 3606- 3621 ,(2015) , 10.1002/SIM.6578
B. Sarov, L. Novack, N. Beer, J. Safi, H. Soliman, J. S. Pliskin, E. Litvak, A. Yaari, E. Shinar, Feasibility and cost-benefit of implementing pooled screening for HCVAg in small blood bank settings. Transfusion Medicine. ,vol. 17, pp. 479- 487 ,(2007) , 10.1111/J.1365-3148.2007.00790.X
Robert Dorfman, The Detection of Defective Members of Large Populations Annals of Mathematical Statistics. ,vol. 14, pp. 436- 440 ,(1943) , 10.1214/AOMS/1177731363
Geert Molenberghs, Geert Verbeke, Likelihood Ratio, Score, and Wald Tests in a Constrained Parameter Space The American Statistician. ,vol. 61, pp. 22- 27 ,(2007) , 10.1198/000313007X171322
N. SPEYBROECK, C. J. WILLIAMS, K. B. LAFIA, B. DEVLEESSCHAUWER, D. BERKVENS, Estimating the prevalence of infections in vector populations using pools of samples. Medical and Veterinary Entomology. ,vol. 26, pp. 361- 371 ,(2012) , 10.1111/J.1365-2915.2012.01015.X
Sophie Edouard, Elsa Prudent, Philippe Gautret, Ziad A Memish, Didier Raoult, None, Cost-Effective Pooling of DNA from Nasopharyngeal Swab Samples for Large-Scale Detection of Bacteria by Real-Time PCR Journal of Clinical Microbiology. ,vol. 53, pp. 1002- 1004 ,(2015) , 10.1128/JCM.03609-14
Navneet K. Dhand, Wesley O. Johnson, Jenny-Ann L. M. L. Toribio, A Bayesian Approach to Estimate OJD Prevalence From Pooled Fecal Samples of Variable Pool Size Journal of Agricultural Biological and Environmental Statistics. ,vol. 15, pp. 452- 473 ,(2010) , 10.1007/S13253-010-0032-8
M. Hung, William H. Swallow, Robustness of Group Testing in the Estimation of Proportions Biometrics. ,vol. 55, pp. 231- 237 ,(1999) , 10.1111/J.0006-341X.1999.00231.X