Operator Spaces Containing c 0 OR l

作者: J. Bonet , P. Domański , M. Lindström , M. S. Ramanujan

DOI: 10.1007/BF03322256

关键词: CombinatoricsCover (topology)MathematicsDiscrete mathematicsOperator (computer programming)Basis (linear algebra)

摘要: Let E, F be either Frechet or complete DF-spaces and let A(E, F) ⊆ B(E, spaces of operators. Under some quite general assumptions we show that: (i) contains a copy c0 if only it l∞; (ii) F), then is complemented in = F); (iii) E has an unconditional basis ≠ L(E, ⊇ c0. The above results cover cases many clssical operator A. We also that EeF l∞ l∞.

参考文章(38)
C. Bessaga, A. Pełczyński, On bases and unconditional convergence of series in Banach spaces Studia Mathematica. ,vol. 17, pp. 151- 164 ,(1958) , 10.4064/SM-17-2-151-164
S. Dierolf, Factorization of Montel operators Studia Mathematica. ,vol. 107, pp. 15- 32 ,(1993) , 10.4064/SM-107-1-15-32
Corneliu Constantinescu, None, Spaces of Measures ,(1984)
L. Drenowski, An extension of a theorem of Rosenthal on operators acting from $l_{∞}(Γ)$ Studia Mathematica. ,vol. 57, pp. 209- 215 ,(1976) , 10.4064/SM-57-3-209-215
Lech Drewnowski, When does (Σ,) contain a copy of _{∞} or ₀? Proceedings of the American Mathematical Society. ,vol. 109, pp. 747- 752 ,(1990) , 10.1090/S0002-9939-1990-1012927-4