Support Vector Based T-Score for Gene Ranking

作者: Piyushkumar A. Mundra , Jagath C. Rajapakse

DOI: 10.1007/978-3-540-88436-1_13

关键词: ComputationFeature vectorData miningStandard scoreBenchmark (computing)Support vector machineFeature (machine learning)Feature selectionRanking SVMComputer sciencePattern recognitionArtificial intelligence

摘要: T-score between classes and gene expressions is widely used for ranking in microarray expression data analysis. We propose to use only support vector points computation of t-scores ranking. The proposed method uses backward elimination features, similar Support Vector Machine Recursive Feature Elimination (SVM-RFE) formulation, but achieves better results than SVM-RFE t-score based feature selection on three benchmark cancer datasets.

参考文章(20)
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
Piyushkumar A. Mundra, Jagath C. Rajapakse, SVM-RFE with Relevancy and Redundancy Criteria for Gene Selection Pattern Recognition in Bioinformatics. pp. 242- 252 ,(2007) , 10.1007/978-3-540-75286-8_24
Satoshi Niijima, Satoru Kuhara, Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE BMC Bioinformatics. ,vol. 7, pp. 543- 543 ,(2006) , 10.1186/1471-2105-7-543
U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, A. J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 6745- 6750 ,(1999) , 10.1073/PNAS.96.12.6745
K.-B. Duan, J.C. Rajapakse, H. Wang, F. Azuaje, Multiple SVM-RFE for gene selection in cancer classification with expression data IEEE Transactions on Nanobioscience. ,vol. 4, pp. 228- 234 ,(2005) , 10.1109/TNB.2005.853657
Jagath C Rajapakse, Kai-Bo Duan, Wee Kiang Yeo, Proteomic cancer classification with mass spectrometry data. American Journal of Pharmacogenomics. ,vol. 5, pp. 281- 292 ,(2005) , 10.2165/00129785-200505050-00001
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, E. S. Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. ,vol. 286, pp. 531- 537 ,(1999) , 10.1126/SCIENCE.286.5439.531
Alain Rakotomamonjy, Variable selection using svm based criteria Journal of Machine Learning Research. ,vol. 3, pp. 1357- 1370 ,(2003)
Carmen Lai, Marcel JT Reinders, Laura J van't Veer, Lodewyk FA Wessels, A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets. BMC Bioinformatics. ,vol. 7, pp. 235- 235 ,(2006) , 10.1186/1471-2105-7-235