Structure and composition of Cu(hkl) surfaces exposed to O2 and emersed from alkaline solutions: Prelude to UHV-EC studies of CO2 reduction at well-defined copper catalysts

作者: Jack H. Baricuatro , Charles B. Ehlers , Kyle D. Cummins , Manuel P. Soriaga , John L. Stickney

DOI: 10.1016/J.JELECHEM.2013.10.001

关键词: ElectrochemistryElectron spectroscopyMetalCopperInorganic chemistryChemistryRedoxAuger electron spectroscopyElectron diffractionOxygen

摘要: The ability of copper electrodes to catalyze the reduction carbon dioxide better than any single-metal material is now well known. However, it also an established fact that efficient scavenger dry oxygen. Hence, initiation CO_2 reaction at must contend with presence surface oxides spontaneously formed when metal exposed ambient air. In this regard, interfacial structures and compositions Cu(1 0 0), 1 0) 1), before after exposure gaseous oxygen emersion from in mildly alkaline media (pH 8 10), were characterized by a combination electrochemistry electron spectroscopy (low-energy diffraction Auger spectroscopy). affinity low-index planes gas was found decrease order > 1). same reactivity trend exhibited emersed K_2SO_4 solution. initial stages anodic oxidation copper, prior formation bulk oxides, span wide potential window pH-sensitive; within precursory region, submonolayer coverages tended form domains long-range order. At potentials far below anodic-oxidation region (E < −0.90 V), Cu(hkl) are expected mimic those zerovalent copper. These results may bear significant implications generation as identification surface-bound intermediates define electrocatalytic selectivity towards molecular species such CO media.

参考文章(26)
John C Vickerman, Ian S Gilmore, Surface analysis : the principal techniques John Wiley & Sons, Ltd. ,(2009) , 10.1002/9780470721582
Manuel P. Soriaga, David A. Harrington, John L. Stickney, Andrzej Wieckowski, Ultrahigh Vacuum Surface Analytical Methods in Electrochemical Studies of Single-Crystal Surfaces. Springer, Boston, MA. pp. 1- 60 ,(1996) , 10.1007/978-1-4899-1718-8_1
D.W. Shoesmith, S. Sunder, M.G. Bailey, G.J. Wallace, F.W. Stanchell, Anodic oxidation of copper in alkaline solutions Journal of Electroanalytical Chemistry. ,vol. 143, pp. 153- 165 ,(1983) , 10.1016/S0022-0728(83)80261-7
John L. Stickney, Charles B. Ehlers, Brian W. Gregory, Adsorption of gaseous and aqueous hydrochloric acid on the low-index planes of copper Langmuir. ,vol. 4, pp. 1368- 1373 ,(1988) , 10.1021/LA00084A029
R.W. Judd, P. Hollins, J. Pritchard, The interaction of oxygen with Cu(111): Adsorption, incorporation and reconstruction Surface Science. ,vol. 171, pp. 643- 653 ,(1986) , 10.1016/0039-6028(86)91065-4
K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin, M. T. M. Koper, A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes Chemical Science. ,vol. 2, pp. 1902- 1909 ,(2011) , 10.1039/C1SC00277E
John M.M. Droog, Bernadette Schlenter, Oxygen electrosorption on copper single crystal electrodes in sodium hydroxide solution Journal of Electroanalytical Chemistry. ,vol. 112, pp. 387- 390 ,(1980) , 10.1016/S0022-0728(80)80421-9
F. Jensen, F. Besenbacher, E. Laegsgaard, I. Stensgaard, Surface reconstruction of Cu(110) induced by oxygen chemisorption Physical Review B. ,vol. 41, pp. 10233- 10236 ,(1990) , 10.1103/PHYSREVB.41.10233
R.N. Lee, H.E. Farnsworth, LEED studies of adsorption on clean (100) copper surfaces Surface Science. ,vol. 3, pp. 461- 479 ,(1965) , 10.1016/0039-6028(65)90026-9