作者: Piotr S. Gromski , Howbeer Muhamadali , David I. Ellis , Yun Xu , Elon Correa
DOI: 10.1016/J.ACA.2015.02.012
关键词: Random forest 、 Supervised learning 、 Machine learning 、 Linear discriminant analysis 、 Feature selection 、 Chemistry 、 Support vector machine 、 Principal (computer security) 、 Statistics 、 Calibration (statistics) 、 Partial least squares regression 、 Artificial intelligence
摘要: … The predominance of partial least squares-discriminant analysis (PLS-DA) used to analyze metabolomics datasets (indeed, it is the most well-known tool to perform classification and …