Underwater Target Detection With Hyperspectral Data: Solutions for Both Known and Unknown Water Quality

作者: Sylvain Jay , Mireille Guillaume , Jacques Blanc-Talon

DOI: 10.1109/JSTARS.2012.2185488

关键词: UnderwaterAlgorithmComputer visionArtificial intelligenceFilter (signal processing)Object detectionMatched filterLikelihood-ratio testHyperspectral imagingCovariance matrixEstimatorComputer science

摘要: In this paper, we present various bathymetric filters, based on the well-known matched filter (MF), adaptive MF, and cosine/coherence estimator detectors, for underwater target detection from hyperspectral remote-sensing data. case of unknown water characteristics, also propose GLRT-based filter, which is a generalized likelihood ratio test-based that estimates these parameters detects at same time. The results estimation process, performed both simulated real data, are encouraging, since, under regular conditions depth, quality, SNR, accuracy quite good. We show new detectors outperform usual ones, obtained by detecting after correction column effect classical method. errors do not greatly impact performances, therefore method self-sufficient can be implemented without any priori knowledge column.

参考文章(27)
Sylvain Jay, Mireille Guillaume, Estimationofwater column parameters with a maximum likelihood approach workshop on hyperspectral image and signal processing evolution in remote sensing. pp. 1- 4 ,(2011) , 10.1109/WHISPERS.2011.6080933
V. Volpe, S. Silvestri, M. Marani, Remote sensing retrieval of suspended sediment concentration in shallow waters Remote Sensing of Environment. ,vol. 115, pp. 44- 54 ,(2011) , 10.1016/J.RSE.2010.07.013
S. Kraut, L.L. Scharf, L.T. McWhorter, Adaptive subspace detectors IEEE Transactions on Signal Processing. ,vol. 49, pp. 1- 16 ,(2001) , 10.1109/78.890324
Vittorio E. Brando, Janet M. Anstee, Magnus Wettle, Arnold G. Dekker, Stuart R. Phinn, Chris Roelfsema, A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data Remote Sensing of Environment. ,vol. 113, pp. 755- 770 ,(2009) , 10.1016/J.RSE.2008.12.003
E.J. Kelly, An Adaptive Detection Algorithm IEEE Transactions on Aerospace and Electronic Systems. ,vol. 22, pp. 115- 127 ,(1986) , 10.1109/TAES.1986.310745
Carl J. Legleiter, Dar A. Roberts, A forward image model for passive optical remote sensing of river bathymetry Remote Sensing of Environment. ,vol. 113, pp. 1025- 1045 ,(2009) , 10.1016/J.RSE.2009.01.018
Sylvain Jay, Mireille Guillaume, Underwater target detection with hyperspectral remote-sensing imagery 2010 IEEE International Geoscience and Remote Sensing Symposium. pp. 2820- 2823 ,(2010) , 10.1109/IGARSS.2010.5650257
K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Vepsäläinen, T. Pyhälahti, Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Science of The Total Environment. ,vol. 268, pp. 59- 77 ,(2001) , 10.1016/S0048-9697(00)00685-9
Eladio Rodriguez-Diaz, Luis O. Jimenez-Rodriguez, Miguel Velez-Reyes, Fernando Gilbes, Charles A. DiMarzio, Subsurface detection of coral reefs in shallow waters using hyperspectral data Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX. ,vol. 5093, pp. 538- 546 ,(2003) , 10.1117/12.486311