Multi-stability and basin crisis in synchronized parametrically driven oscillators

作者: Olasunkanmi I. Olusola , Uchechukwu E. Vincent , Abdulahi N. Njah

DOI: 10.1007/S11071-010-9756-9

关键词: Synchronization (computer science)Coupling (physics)BistabilityControl theoryExponential stabilityAttractorSynchronization of chaosStatistical physicsLyapunov stabilityBifurcationPhysics

摘要: This paper studies the synchronization dynamics of two linearly coupled parametrically excited oscillators. The Lyapunov stability theory is employed to obtain some sufficient algebraic criteria for global asymptotic systems, and an estimated critical coupling, k cr, which could be observed determined. transition found associated with boundary crisis chaotic attractor. In bistable states, where asymmetric T-periodic attractors co-exist, we show that oscillators can attain multi-stability via a new dynamical transition—the basin wherein co-existing are destroyed while created. steady states examined possible bifurcation routes identified.

参考文章(44)
Edward Ott, Chaos in Dynamical Systems Cambridge University Press. ,(2002) , 10.1017/CBO9780511803260
W. Szemplińska-Stupnicka, E. Tyrkiel, Common Features of the Onset of the Persistent Chaos in Nonlinear Oscillators: A Phenomenological Approach Nonlinear Dynamics. ,vol. 27, pp. 271- 293 ,(2002) , 10.1023/A:1014456416158
Albert C.J Luo, George Zaslavsky, Monograph series on nonlinear science and complexity Elsevier. ,(2006)
Arkady Pikovsky, Michael Rosenblum, Jürgen Kurths, Synchronization: Phase locking and frequency entrainment ,(2001) , 10.1017/CBO9780511755743
Jean-Jacques E. Slotine, Weiping Li, Applied Nonlinear Control ,(1991)
Roger A Horn, Topics in Matrix Analysis ,(2010)
Joseph P. LaSalle, The stability of dynamical systems ,(1976)
Arkady Pikovsky, Michael Rosenblum, Jürgen Kurths, Synchronization: A Universal Concept in Nonlinear Sciences ,(2001)
Shuguang Guan, C.-H. Lai, G. W. Wei, Bistable chaos without symmetry in generalized synchronization. Physical Review E. ,vol. 71, pp. 036209- ,(2005) , 10.1103/PHYSREVE.71.036209
Louis M. Pecora, Thomas L. Carroll, Synchronization in chaotic systems Physical Review Letters. ,vol. 64, pp. 821- 824 ,(1990) , 10.1103/PHYSREVLETT.64.821