On primitive ideals

作者: Victor Ginzburg

DOI: 10.1007/S00029-003-0338-2

关键词: MathematicsNon-associative algebraPure mathematicsUniversal enveloping algebraPrimitive idealDivision algebraAlgebraQuantum groupAlgebra representationSubalgebraCellular algebra

摘要: We extend two well-known results on primitive ideals in enveloping algebras of semisimple Lie algebras, the Irreducibility theorem for associated varieties and Duflo ideals, to much wider classes algebras. Our general version Theorem says that if A is a positively filtered associative algebra such gr commutative Poisson with finitely many symplectic leaves, then variety any ideal closure single connected leaf. an “triangular structure”, see § 2, annihilator simple highest weight module. Applications reflection Cherednik are discussed.

参考文章(19)
Neil Chriss, Victor Ginzburg, Representation theory and complex geometry ,(1997)
J. T. Stafford, N. R. Wallach, The restriction of admissible modules to parabolic subalgebras Transactions of the American Mathematical Society. ,vol. 272, pp. 333- 350 ,(1982) , 10.1090/S0002-9947-1982-0656493-1
Victor Ginzburg, Pavel Etingof, Yuri Berest, Cherednik algebras and differential operators on quasi-invariants Duke Mathematical Journal. ,vol. 118, pp. 279- 337 ,(2003) , 10.1215/S0012-7094-03-11824-4
James E. Humphreys, Reflection groups and coxeter groups ,(1990)
A. Polishchuk, Algebraic geometry of Poisson brackets Journal of Mathematical Sciences. ,vol. 84, pp. 1413- 1444 ,(1997) , 10.1007/BF02399197
William Casselman, M. Scott Osborne, The restriction of admissible representations ton Mathematische Annalen. ,vol. 233, pp. 193- 198 ,(1978) , 10.1007/BF01405350
A. Joseph, Gelfand-Kirillov Dimension for the Annihilators of Simple Quotients of Verma Modules Journal of the London Mathematical Society. ,vol. s2-18, pp. 50- 60 ,(1978) , 10.1112/JLMS/S2-18.1.50
V. Ginsburg, Characteristic varieties and vanishing cycles. Inventiones Mathematicae. ,vol. 84, pp. 327- 402 ,(1986) , 10.1007/BF01388811
Nicolas Guay, Projective modules in the category O for the Cherednik algebra Journal of Pure and Applied Algebra. ,vol. 182, pp. 209- 221 ,(2003) , 10.1016/S0022-4049(03)00014-8