Semisimplicity of Hecke and (walled) Brauer algebras

作者: HENNING HAAHR ANDERSEN , CATHARINA STROPPEL , DANIEL TUBBENHAUER

DOI: 10.1017/S1446788716000392

关键词: Discrete mathematicsField (mathematics)EndomorphismPure mathematicsMathematics

摘要: We show how to use Jantzen's sum formula for Weyl modules prove semisimplicity criteria endomorphism algebras of $\textbf{U}_q$-tilting (for any field $\mathbb{K}$ and parameter $q\in\mathbb{K}-\{0,-1\}$). As an application, we recover the Hecke types $\textbf{A}$ $\textbf{B}$, walled Brauer from our more general approach.

参考文章(50)
L. Thams, Two classical results in the quantum mixed case Crelle's Journal. ,vol. 436, pp. 129- 153 ,(1993)
Jens C. Jantzen, Darstellungen halbeinfacher Gruppen und kontravariante Formen. Crelle's Journal. ,vol. 290, pp. 117- 141 ,(1977)
Henning Haahr Andersen, Catharina Stroppel, Daniel Tubbenhauer, Cellular structures using $\textbf{U}_q$-tilting modules arXiv: Quantum Algebra. ,(2015) , 10.2140/PJM.2018.292.21
Nolan R. Wallach, Roe Goodman, Symmetry, Representations, and Invariants ,(2009)
Andrew Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group American Mathematical Society. ,vol. 15, ,(1999) , 10.1090/ULECT/015
Jens Carsten Jantzen, Representations of algebraic groups ,(1987)
Volodymyr Mazorchuk, Catharina Stroppel, $$G(\ell ,k,d)$$ G ( ℓ , k , d ) -modules via groupoids Journal of Algebraic Combinatorics. ,vol. 43, pp. 11- 32 ,(2016) , 10.1007/S10801-015-0623-0
Jens Carsten Jantzen, Lectures on quantum groups ,(1995)