An Application of Support Vector Machine to Companies’ Financial Distress Prediction

作者: Xiao-Feng Hui , Jie Sun

DOI: 10.1007/11681960_27

关键词: Support vector machineBackpropagationMachine learningCross-validationLinear discriminant analysisArtificial neural networkArtificial intelligenceLogistic regressionRegression analysisComputer scienceStability (learning theory)Data mining

摘要: … Because of the importance of companies’ financial distress prediction, this paper applies support vector machine (SVM) to the early-warning of financial distress. Taking listed …

参考文章(18)
Desmond Fletcher, Ernie Goss, Forecasting with neural networks Information & Management. ,vol. 24, pp. 159- 167 ,(1993) , 10.1016/0378-7206(93)90064-Z
Russell L. Ackoff, Optimization + objectivity = optout European Journal of Operational Research. ,vol. 1, pp. 1- 7 ,(1977) , 10.1016/S0377-2217(77)81003-5
Kyoung-jae Kim, Financial time series forecasting using support vector machines Neurocomputing. ,vol. 55, pp. 307- 319 ,(2003) , 10.1016/S0925-2312(03)00372-2
William H. Beaver, Financial Ratios As Predictors of Failure Journal of Accounting Research. ,vol. 4, pp. 71- 111 ,(1966) , 10.2307/2490171
Carlos Serrano-Cinca, Self organizing neural networks for financial diagnosis decision support systems. ,vol. 17, pp. 227- 238 ,(1996) , 10.1016/0167-9236(95)00033-X
James A Ohlson, None, Financial Ratios and the Probabilistic Prediction of Bankruptcy Journal of Accounting Research. ,vol. 18, pp. 109- 131 ,(1980) , 10.2307/2490395
Tony Van Gestel, Bart Baesens, Johan A.K. Suykens, Dirk Van den Poel, Dirk-Emma Baestaens, Marleen Willekens, Bayesian kernel based classification for financial distress detection European Journal of Operational Research. ,vol. 172, pp. 979- 1003 ,(2006) , 10.1016/J.EJOR.2004.11.009