Bounding the equilibrium distribution of Markov population models

作者: Tuǧrul Dayar , Holger Hermanns , David Spieler , Verena Wolf

DOI: 10.1002/NLA.795

关键词: Mathematical optimizationMathematicsApplied mathematicsMarkov kernelMarkov propertyMarkov chain Monte CarloBalance equationProbability mass functionProbability distributionContinuous-time Markov chainMarkov chain

摘要: SUMMARY We propose a bounding technique for the equilibrium probability distribution of continuous-time Markov chains with population structure and infinite state space. We use Lyapunov functions to determine finite set states that contains most mass. Then we apply refinement scheme based on stochastic complementation derive lower upper bounds each within set. To show usefulness our approach, present experimental results several examples from biology. Copyright © 2011 John Wiley & Sons, Ltd.

参考文章(35)
Stefan Engblom, Numerical Solution Methods in Stochastic Chemical Kinetics Acta Universitatis Upsaliensis. ,(2008)
Evgenia Smirni, Alma Riska, Aggregate matrix-analytic techniques and their applications The College of William and Mary. ,(2002) , 10.21220/S2-KY81-F151
P.-J. Courtois, Analysis of Large Markovian Models by Parts. Applications to Queueing Network Models Messung, Modellierung und Bewertung von Rechensystemen. pp. 1- 10 ,(1985) , 10.1007/978-3-642-87472-7_1
Thomas A. Henzinger, Linar Mikeev, Maria Mateescu, Verena Wolf, Hybrid numerical solution of the chemical master equation computational methods in systems biology. pp. 55- 65 ,(2010) , 10.1145/1839764.1839772
Thomas G. Kurtz, The Relationship between Stochastic and Deterministic Models for Chemical Reactions The Journal of Chemical Physics. ,vol. 57, pp. 2976- 2978 ,(1972) , 10.1063/1.1678692
R. R. Muntz, E. de Souza e Silva, A. Goyal, Bounding availability of repairable computer systems measurement and modeling of computer systems. ,vol. 17, pp. 29- 38 ,(1989) , 10.1145/75108.75376
Roger B. Sidje, Kevin Burrage, Shev MacNamara, Inexact Uniformization Method for Computing Transient Distributions of Markov Chains SIAM Journal on Scientific Computing. ,vol. 29, pp. 2562- 2580 ,(2007) , 10.1137/060662629