Curvelets, multiresolution representation, and scaling laws

作者: Emmanuel J. Candes , David L. Donoho

DOI: 10.1117/12.408568

关键词: TopologyWaveletAlgorithmRepresentation (mathematics)Set (abstract data type)ScalingFrame (networking)CurveletSensitivity (control systems)ShearletMathematics

摘要: … question is than just the portion which wavelets represent. In addition, we also believe that a lot of claims regarding the applicability of wavelets to image processing problems such as …

参考文章(11)
Yves Meyer, Wavelets and Operators ,(1993)
Theory of Edge Detection Proceedings of The Royal Society B: Biological Sciences. ,vol. 207, pp. 187- 217 ,(1980) , 10.1098/RSPB.1980.0020
Pierre Gilles Lemarié-Rieusset, Yves Meyer, Ondelettes et bases hilbertiennes. Revista Matematica Iberoamericana. ,vol. 2, pp. 1- 18 ,(1986) , 10.4171/RMI/22
Emmanuel J. Candès, David L. Donoho, Recovering edges in ill-posed inverse problems: optimality of curvelet frames Annals of Statistics. ,vol. 30, pp. 784- 842 ,(2002) , 10.1214/AOS/1028674842
David L. Donoho, Orthonormal ridgelets and linear singularities Siam Journal on Mathematical Analysis. ,vol. 31, pp. 1062- 1099 ,(2000) , 10.1137/S0036141098344403
David L. Donoho, Iain M. Johnstone, Minimax estimation via wavelet shrinkage Annals of Statistics. ,vol. 26, pp. 879- 921 ,(1998) , 10.1214/AOS/1024691081
P. Burt, E. Adelson, The Laplacian Pyramid as a Compact Image Code IEEE Transactions on Communications. ,vol. 31, pp. 671- 679 ,(1983) , 10.1109/TCOM.1983.1095851
S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 11, pp. 674- 693 ,(1989) , 10.1109/34.192463
B. Alpert, G. Beylkin, R. Coifman, V. Rokhlin, Wavelet-like bases for the fast solutions of second-kind integral equations SIAM Journal on Scientific Computing. ,vol. 14, pp. 159- 184 ,(1993) , 10.1137/0914010