Complex-valued neural networks with adaptive spline activation function for digital-radio-links nonlinear equalization

作者: A. Uncini , L. Vecci , P. Campolucci , F. Piazza

DOI: 10.1109/78.740133

关键词: Symbol rateComputer scienceArtificial neural networkAlgorithmActivation functionTime delay neural networkAdaptive systemDigital signal processingControl theoryDigital radioIntersymbol interferenceAdaptive filterNonlinear system

摘要: … useful for nonlinear adaptive signal processing, are as follows: … 2) Complex-valued standard multilayer neural network with … 3) Complex-valued ASNN composed of only one complex …

参考文章(37)
N. Benvenuto, M. Marchesi, F. Piazza, A. Uncini, A COMPARISON BETWEEN REAL AND COMPLEX VALUED NEURAL NETWORKS IN COMMUNICATION APPLICATIONS international conference on artificial neural networks. pp. 1177- 1180 ,(1991) , 10.1016/B978-0-444-89178-5.50046-4
Edwin Catmull, Raphael Rom, A CLASS OF LOCAL INTERPOLATING SPLINES Computer Aided Geometric Design. pp. 317- 326 ,(1974) , 10.1016/B978-0-12-079050-0.50020-5
David E. Rumelhart, James L. McClelland, , Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations Computational Models of Cognition and Perception. ,(1986) , 10.7551/MITPRESS/5236.001.0001
S. Chen, G.J. Gibson, C.F.N. Cowan, Adaptive channel equalisation using a polynomial-perceptron structure IEE Proceedings I Communications, Speech and Vision. ,vol. 137, pp. 257- 264 ,(1990) , 10.1049/IP-I-2.1990.0036
Shun-ichi Amari, A universal theorem on learning curves Neural Networks. ,vol. 6, pp. 161- 166 ,(1993) , 10.1016/0893-6080(93)90013-M
G. Karam, H. Sari, Data predistortion techniques using intersymbol interpolation IEEE Transactions on Communications. ,vol. 38, pp. 1716- 1723 ,(1990) , 10.1109/26.61442
D. D. Falconer, Adaptive Equalization of Channel Nonlinearities in QAM Data Transmission Systems Bell System Technical Journal. ,vol. 57, pp. 2589- 2611 ,(1978) , 10.1002/J.1538-7305.1978.TB02168.X
Kurt Hornik, Maxwell Stinchcombe, Halbert White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks Neural Networks. ,vol. 3, pp. 551- 560 ,(1990) , 10.1016/0893-6080(90)90005-6