Pulsed-Laser Deposited 35 Bi(Mg 1/2 Ti 1/2 ) O 3 -65 PbTiO 3 Thin Films—Part I: Influence of Processing on Composition, Microstructure, and Ferroelectric Hysteresis

作者: Carl Morandi , Jennifer L. Gray , Wes Auker , Susan Trolier-McKinstry

DOI: 10.1109/TUFFC.2018.2824979

关键词: Pulsed laserFerroelectricityAnalytical chemistryMicrostructurePolarization (waves)Thin filmPulsed laser depositionMaterials scienceNon-volatile memoryPyrochlore

摘要: 35 Bi(Mg1/2Ti1/2)O3 - 65 PbTiO3 (35 BiMT-65 PT) is a potential candidate material for high-temperature nonvolatile ferroelectric memory. For pulsed-laser deposited PT films with the perovskite structure, it was found that as chamber pressure during deposition decreased, Mg and Pb contents in as-deposited drop, while concentration of Bi increases. Concurrently change composition, remanent polarization $P_{r}$ increases 64% to $\approx 21~\mu \text{C}$ /cm2 polarization–electric field loops rotated counterclockwise Decreasing seed layer thickness from 36 16 nm led decrease 14~\mu /cm2. Adjusting target composition allowed which had near-stoichiometric concentrations, but all cases, grown were lead deficient. These polarizations 18– $20~\mu If content increased too far, possibly due need evolve more PbO defective growth layers. Finally, rate showed no substantial effect on film did have significant impact properties. As 22~\mu enhanced crystalline quality. At laser frequencies 5 Hz, Mg-rich pyrochlore phase begins form maximum $P_{r} \approx The processing-composition behavior explained via preferential adsorption A-site, results vacancies.

参考文章(52)
C. J. Stringer, T. R. Shrout, C. A. Randall, I. M. Reaney, Classification of transition temperature behavior in ferroelectric PbTiO3-Bi(Me'Me )O3 solid solutions Journal of Applied Physics. ,vol. 99, pp. 024106- ,(2006) , 10.1063/1.2163986
C. A. Randall, R. Eitel, B. Jones, T. R. Shrout, D. I. Woodward, I. M. Reaney, Investigation of a high Tc piezoelectric system: (1−x)Bi(Mg1/2Ti1/2)O3–(x)PbTiO3 Journal of Applied Physics. ,vol. 95, pp. 3633- 3639 ,(2004) , 10.1063/1.1625089
Shujun Zhang, Clive A. Randall, Thomas R. Shrout, High Curie temperature piezocrystals in the BiScO3-PbTiO3 perovskite system Applied Physics Letters. ,vol. 83, pp. 3150- 3152 ,(2003) , 10.1063/1.1619207
Matthew R. Suchomel, Peter K. Davies, Predicting the position of the morphotropic phase boundary in high temperature PbTiO3-Bi(B′B″)O3 based dielectric ceramics Journal of Applied Physics. ,vol. 96, pp. 4405- 4410 ,(2004) , 10.1063/1.1789267
C. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, G. W. Brown, J. C. Jiang, X. Q. Pan, Adsorption-controlled growth of Bi4Ti3O12 by reactive MBE Applied Physics Letters. ,vol. 72, pp. 2817- 2819 ,(1998) , 10.1063/1.121468
Matthew R. Suchomel, Peter K. Davies, Enhanced tetragonality in (x)PbTiO3-(1−x)Bi(Zn1∕2Ti1∕2)O3 and related solid solution systems Applied Physics Letters. ,vol. 86, pp. 262905- ,(2005) , 10.1063/1.1978980
D. M. Marincel, S. Jesse, A. Belianinov, M. B. Okatan, S. V. Kalinin, T. N. Jackson, C. A. Randall, S. Trolier-McKinstry, A-site stoichiometry and piezoelectric response in thin film PbZr1−xTixO3 Journal of Applied Physics. ,vol. 117, pp. 204104- ,(2015) , 10.1063/1.4921869
Shujun Zhang, Craig Stringer, Ru Xia, Soon-Mok Choi, Clive A. Randall, Thomas R. Shrout, Investigation of bismuth-based perovskite system: (1−x)Bi(Ni2∕3Nb1∕3)O3–xPbTiO3 Journal of Applied Physics. ,vol. 98, pp. 034103- ,(2005) , 10.1063/1.1991969
R. E. Eitel, S. J. Zhang, T. R. Shrout, C. A. Randall, I. Levin, Phase Diagram of the Perovskite System (1−x)BiScO3-xPbTiO3 Journal of Applied Physics. ,vol. 96, pp. 2828- 2831 ,(2004) , 10.1063/1.1777810