Euler Critical Force Calculation for Laced Columns

作者: Alexander G. Razdolsky

DOI: 10.1061/(ASCE)0733-9399(2005)131:10(997)

关键词: Euler's formulaMathematical analysisNumerical analysisBoundary value problemBucklingStatically indeterminateMathematicsCritical valueInitial value problemGeometryCritical load

摘要: The paper presents a method of solving the buckling problem laced column as statically indeterminate structure without analyzing determinants high order. flexural and torsional problems are reduced to two-point boundary value for difference equation system. Euler critical load is determined result fourth order determinant with any degree static indeterminacy. solution based on initial values. Stability columns types lattice (crosswise, serpentine, batten struts); number panels variable spacing can be examined by this manner. analogy between established. It enables one use same relations consideration both kinds buckling. obtained numerical results show that loads calculated substantially differed from those approximated Engesser's approach. A PC program checking stability designer developed basis present method.

参考文章(10)
H. Ziegler, Arguments for and against Engesser's buckling formulas Ingenieur-Archiv. ,vol. 52, pp. 105- 113 ,(1982) , 10.1007/BF00536318
Friedrich Bleich, Lyle B. Ramsey, Hans H. Bleich, Buckling strength of metal structures Mc Graw-Hill Book Company, Inc., Cardnr. 51-12588. ,(1952)
V. Z. Vlasov, Thin-walled elastic beams PST Catalogue. ,vol. 428, ,(1959)
Federico M Mazzolani, Giulio Ballio, Theory and design of steel structures ,(1983)
Stephen P. Timoshenko, Theory of Elastic Stability ,(1936)
Ronald D Ziemian, Guide to stability design criteria for metal structures John Wiley. ,(1998)
Fung J. Lin, Ernst C. Glauser, Bruce G. Johnston, Behavior of Laced and Battened Structural Members Journal of the Structural Division. ,vol. 96, pp. 1377- 1401 ,(1970) , 10.1061/JSDEAG.0002621
Sanford M. Roberts, Jerome S. Shipman, Two-point boundary value problems: shooting methods ,(1972)
S. D. Conte, The Numerical Solution of Linear Boundary Value Problems Siam Review. ,vol. 8, pp. 309- 321 ,(1966) , 10.1137/1008063