Hydrophobic Amino Acid and Single-Atom Substitutions Increase DNA Polymerase Selectivity

作者: Nicolas Z. Rudinger , Ramon Kranaster , Andreas Marx

DOI: 10.1016/J.CHEMBIOL.2006.11.016

关键词: DNA polymeraseBiologyPrimaseDNA polymerase IPolymeraseBiophysicsBiochemistryBase pairDNA clampProcessivityDNA polymerase II

摘要: Summary DNA polymerase fidelity is of immense biological importance due to the fundamental requirement for accurate synthesis in both replicative and repair processes. Subtle hydrogen-bonding networks between polymerases their primer/template substrates are believed have impact on selectivity. We show that deleting defined interactions kind by rationally designed hydrophobic substitution mutations can result in a more selective enzyme. Furthermore, a single-atom replacement within substrate through chemical modification, which leads an altered acceptor potential steric demand substrate, further increased selectivity developed systems. Accordingly, this study about alterations selectivity—enzyme wise—further highlights relevance shape complementary polar

参考文章(44)
B.A. Connolly, Synthetic oligodeoxynucleotides containing modified bases. Methods in Enzymology. ,vol. 211, pp. 36- 53 ,(1992) , 10.1016/0076-6879(92)11005-4
Premal H. Patel, Lawrence A. Loeb, Getting a grip on how DNA polymerases function Nature Structural & Molecular Biology. ,vol. 8, pp. 656- 659 ,(2001) , 10.1038/90344
Sylvie Doublié, Stanley Tabor, Alexander M. Long, Charles C. Richardson, Tom Ellenberger, Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution Nature. ,vol. 391, pp. 251- 258 ,(1998) , 10.1038/34593
Steven Creighton, Linda B. Bloom, Myron F. Goodman, Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods in Enzymology. ,vol. 262, pp. 232- 256 ,(1995) , 10.1016/0076-6879(95)62021-4
A.H. Polesky, T.A. Steitz, N.D. Grindley, C.M. Joyce, Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. Journal of Biological Chemistry. ,vol. 265, pp. 14579- 14591 ,(1990) , 10.1016/S0021-9258(18)77342-0
James R. Kiefer, Chen Mao, Jeffrey C. Braman, Lorena S. Beese, Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature. ,vol. 391, pp. 304- 307 ,(1998) , 10.1038/34693
Sean J. Johnson, Lorena S. Beese, Structures of Mismatch Replication Errors Observed in a DNA Polymerase Cell. ,vol. 116, pp. 803- 816 ,(2004) , 10.1016/S0092-8674(04)00252-1
Huifang Huang, Rajiv Chopra, Gregory L Verdine, Stephen C Harrison, Structure of a Covalently Trapped Catalytic Complex of HIV-1 Reverse Transcriptase: Implications for Drug Resistance Science. ,vol. 282, pp. 1669- 1675 ,(1998) , 10.1126/SCIENCE.282.5394.1669