Characteristic relational patterns

作者: Arne Koopman , Arno Siebes

DOI: 10.1145/1557019.1557071

关键词: SuperkeyDatabase schemaNested set modelDatabase designRelational databaseRelational data miningViewData definition languageData miningComputer scienceChange data captureDatabase modelObject-relational impedance mismatchAliasRelational modelEntity–relationship model

摘要: Research in relational data mining has two major directions: finding global models of a database and the discovery local patterns within database. While show how attribute values co-occur detail, their huge numbers hamper usage analysis. Global models, on other hand, only provide summary different tables attributes relate to each other, lacking detail what is going at level.In this paper we introduce new approach that combines positive properties both it provides detailed description complete using small set patterns. More particular, utilise rich pattern language can be encoded by such Then, based MDLprinciple, novel RDB-KRIMP algorithm selects allows for most succinct encoding This set, code table, compact terms We resulting very small, size number its patterns: reduction up 4 orders magnitude attained.

参考文章(18)
Jilles Vreeken, Arno Siebes, Matthijs van Leeuwen, Item Sets that Compress. siam international conference on data mining. pp. 395- 406 ,(2006)
Heikki Mannila, Bart Goethals, Wim Le Page, Mining Association Rules of Simple Conjunctive Queries siam international conference on data mining. pp. 96- 107 ,(2008)
Arno Siebes, Arne Koopman, Discovering Relational Items Sets Efficiently. siam international conference on data mining. pp. 108- 119 ,(2008)
Siegfried Nijssen, Joost N. Kok, Efficient Frequent Query Discovery in Farmer european conference on principles of data mining and knowledge discovery. ,vol. 2838, pp. 350- 362 ,(2003) , 10.1007/978-3-540-39804-2_32
Iztok Savnik, Peter A. Flach, Database dependency discovery: a machine learning approach Ai Communications. ,vol. 12, pp. 139- 160 ,(1999) , 10.5555/1216155.1216159
Maytal Saar Tsechansky, Nava Pliskin, Gadi Rabinowitz, Avi Porath, Mining relational patterns from multiple relational tables decision support systems. ,vol. 27, pp. 177- 195 ,(1999) , 10.1016/S0167-9236(99)00043-3
Heikki Mannila, Kari-Jouko Räihä, Algorithms for inferring functional dependencies from relations Data & Knowledge Engineering. ,vol. 12, pp. 83- 99 ,(1994) , 10.1016/0169-023X(94)90023-X
Avi Pfeffer, Daphne Koller, Probabilistic frame-based systems national conference on artificial intelligence. pp. 580- 587 ,(1998)