作者: Weiyi Sun , Anna Rumshisky , Ozlem Uzuner
DOI: 10.1016/J.JBI.2013.07.004
关键词: Natural language processing 、 Narrative 、 Temporal annotation 、 Quality (business) 、 Artificial intelligence 、 Process (engineering) 、 Documentation 、 Annotation 、 Informatics 、 Information retrieval 、 Health informatics 、 Computer science
摘要: Temporal information in clinical narratives plays an important role patients' diagnosis, treatment and prognosis. In order to represent narrative accurately, medical natural language processing (MLP) systems need correctly identify interpret temporal information. To promote research this area, the Informatics for Integrating Biology Bedside (i2b2) project developed a temporally annotated corpus of narratives. This contains 310 de-identified discharge summaries, with annotations events, expressions relations. paper describes process followed development discusses annotation guideline development, methodology, quality.