作者: XiaoHui Yuan , Nan Lin , XiaoGang Dong , TianQing Liu
DOI: 10.1007/S11425-015-0175-Y
关键词: Data application 、 Econometrics 、 Mathematics 、 Empirical likelihood 、 Longitudinal data 、 Estimating equations 、 Statistics 、 Quantile regression model 、 Quantile 、 Quantile regression 、 Correlation 、 General Mathematics
摘要: This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood (EL). approach efficiently incorporates the information from conditional restrictions to account within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high correlation. efficiency gain quantified theoretically illustrated via simulation real application.