Conservation of charge and the Einstein–Maxwell field equations

作者: Gregory Walter Horndeski

DOI: 10.1063/1.522837

关键词: Kerr–Newman metricVariational principleClassical mechanicsMathematical physicsCharge conservationDifferential equationSimultaneous equationsMaxwell's equationsEinstein field equationsPhysicsElectromagnetic field

摘要: In a space of four dimensions I determine all possible second‐order vector–tensor field equations which are derivable from variational principle, compatible with the notion charge conservation and in agreement Maxwell’s flat space. The general solution to this problem contains Einstein–Maxwell (with cosmological term) as special case.

参考文章(6)
David Lovelock, Divergence-free tensorial concomitants Aequationes Mathematicae. ,vol. 4, pp. 127- 138 ,(1969) , 10.1007/BF01817753
H. Rund, Variational problems involving combined tensor fieds Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg. ,vol. 29, pp. 243- 262 ,(1966) , 10.1007/BF03016051
D. Lovelock, The Huggins term in curved space Lettere Al Nuovo Cimento. ,vol. 10, pp. 581- 584 ,(1974) , 10.1007/BF02782630
D. Lovelock, The Euler-Lagrange expression and degenerate lagrange densities Journal of The Australian Mathematical Society. ,vol. 14, pp. 482- 495 ,(1972) , 10.1017/S1446788700011125
Stephen W. Hawking, George Francis Rayner Ellis, The Large Scale Structure of Space-Time ,(1973)
K. B. Danks, L.L.L. Notes and Queries. ,vol. 193, pp. 545- 545 ,(1948) , 10.1093/NQ/193.25.545