ERROR AND UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS IN MECHANICS COMPUTATIONAL MODELS

作者: Sankaran Mahadevan , Bin Liang

DOI: 10.1615/INT.J.UNCERTAINTYQUANTIFICATION.V1.I2.30

关键词: Uncertainty quantificationSurrogate modelSampling (statistics)Observational errorSensitivity (control systems)DiscretizationComputational modelMechanicsComputer scienceFinite element method

摘要: Multiple sources of errors and uncertainty arise in mechanics computational models contribute to the final model prediction. This paper develops a systematic error quantification methodology for models. Some types are deterministic, some stochastic. Appropriate procedures developed either correct prediction deterministic or account stochastic through sampling. First, input error, discretization finite element analysis (FEA), surrogate output measurement considered. Next, which arises due use sampling-based methods, is also investigated. Model form estimated based on comparison corrected against physical observations after accounting solution approximation errors, experimental (input output). Both local global sensitivity measures investigated estimate rank contribution each source result. Two numerical examples used demonstrate proposed by considering mechanical stress fatigue crack growth analysis.

参考文章(35)
Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola, Global Sensitivity Analysis: The Primer ,(2008)
Carl Edward Rasmussen, Gaussian processes in machine learning Lecture Notes in Computer Science. pp. 63- 71 ,(2003) , 10.1007/978-3-540-28650-9_4
T.L. Anderson, Fracture Mechanics : Fundamentals and Applications NASA STI/Recon Technical Report A. ,vol. 92, pp. 40200- ,(2017) , 10.1201/9781315370293
Roger G. Ghanem, Pol D. Spanos, Stochastic Finite Elements: A Spectral Approach ,(1990)
Yunus A Cengel, John M Cimbala, Fluid Mechanics: Fundamentals and Applications ,(2004)
S. Kullback, R. A. Leibler, On Information and Sufficiency Annals of Mathematical Statistics. ,vol. 22, pp. 79- 86 ,(1951) , 10.1214/AOMS/1177729694
L. Demkowicz, J.T. Oden, T. Strouboulis, Adaptive finite elements for flow problems with moving boundaries. part I: Variational principles and a posteriori estimates Computer Methods in Applied Mechanics and Engineering. ,vol. 46, pp. 217- 251 ,(1984) , 10.1016/0045-7825(84)90063-X