On double cosets with the trivial intersection property and Kazhdan-Lusztig cells in $S_n$

作者: Thomas P. McDonough , Christos A. Pallikaros

DOI: 10.22108/IJGT.2015.9795

关键词: Composition (combinatorics)Type (model theory)CosetNormal subgroupLambdaDiscrete mathematicsHecke algebraSymmetric groupIntersectionMathematics

摘要: ‎For a composition $lambda$ of $n$ our aim is to obtain reduced forms‎ ‎for all the elements in ‎$w_{J(lambda)}$‎, ‎the longest element standard parabolic‎ ‎subgroup $S_n$ corresponding $lambda$‎. ‎We investigate how far this possible achieve by looking at‎ ‎elements form $w_{J(lambda)}d$‎, ‎where $d$ prefix of‎ ‎an minimum length $(W_{J(lambda)},B)$ double coset‎ ‎with trivial intersection property‎, ‎$B$ being parabolic subgroup‎ ‎of whose type `dual' that $W_{J(lambda)}$‎.

参考文章(22)
Francesco Brenti, Anders Björner, Combinatorics of Coxeter Groups ,(2010)
George Lusztig, Cells in Affine Weyl Groups Algebraic Groups and Related Topics. pp. 255- 287 ,(1985) , 10.2969/ASPM/00610255
Gordon James, Adalbert Kerber, The representation theory of the symmetric group Cambridge University Press. ,(1984) , 10.1017/CBO9781107340732
Meinolf Josef Geck, Goetz Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras ,(2000)
George Lusztig, On a theorem of Benson and Curtis Journal of Algebra. ,vol. 71, pp. 490- 498 ,(1981) , 10.1016/0021-8693(81)90188-5
David Kazhdan, George Lusztig, Representations of Coxeter Groups and Hecke Algebras. Inventiones Mathematicae. ,vol. 53, pp. 165- 184 ,(1979) , 10.1007/BF01390031