Necessary Conditions for Differential Inclusion Problems with State Constraints

作者: Richard Vinter

DOI: 10.1007/978-0-8176-8086-2_10

关键词: Class (set theory)Optimal controlDifferential inclusionComputer scienceConstraint (information theory)State (functional analysis)Mathematical optimization

摘要: In this, chapter we continue our investigation of necessary conditions for optimal control problems with pathwise state constraints. Now, however, the class considered is one in which dynamic constraint formulated as a differential inclusion.

参考文章(132)
Richard Vinter, Convex duality and nonlinear optimal control Siam Journal on Control and Optimization. ,vol. 31, pp. 518- 538 ,(1993) , 10.1137/0331024
F. H. Clarke, R. B. Vinter, Regularity Properties of Optimal Controls SIAM Journal on Control and Optimization. ,vol. 28, pp. 980- 997 ,(1990) , 10.1137/0328055
Hubert Halkin, On the necessary condition for optimal control of nonlinear systems Journal D Analyse Mathematique. ,vol. 12, pp. 1- 82 ,(1964) , 10.1007/BF02807428
P. D. Loewen, R. T. Rockafellar, New Necessary Conditions for the Generalized Problem of Bolza Siam Journal on Control and Optimization. ,vol. 34, pp. 1496- 1511 ,(1996) , 10.1137/S0363012994275932
F.H. Clarke, A decoupling principle in the calculus of variations Journal of Mathematical Analysis and Applications. ,vol. 172, pp. 92- 105 ,(1993) , 10.1006/JMAA.1993.1009
A. E. Rapaport, R. B. Vinter, Invariance properties of time measurable differential inclusions and dynamic programming Journal of Dynamical and Control Systems. ,vol. 2, pp. 423- 448 ,(1996) , 10.1007/BF02269425
Stanislaw Łojasiewicz, Barbara Kas̀kosz, A maximum principle for generalized control systems Nonlinear Analysis-theory Methods & Applications. ,vol. 9, pp. 109- 130 ,(1985) , 10.1016/0362-546X(85)90067-7
H. Frankowska, S. Plaskacz, T. Rzezuchowski, Measurable Viability Theorems and the Hamilton-Jacobi-Bellman Equation Journal of Differential Equations. ,vol. 116, pp. 265- 305 ,(1995) , 10.1006/JDEQ.1995.1036
Frank H. Clarke, Generalized gradients and applications Transactions of the American Mathematical Society. ,vol. 205, pp. 247- 262 ,(1975) , 10.1090/S0002-9947-1975-0367131-6
Richard Vinter, Harry Zheng, The Extended Euler--Lagrange Condition for Nonconvex Variational Problems Siam Journal on Control and Optimization. ,vol. 35, pp. 56- 77 ,(1997) , 10.1137/S0363012995283133