Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences.

作者: Mark Alber , Adrian Buganza Tepole , William R. Cannon , Suvranu De , Salvador Dura-Bernal

DOI: 10.1038/S41746-019-0193-Y

关键词: Multiscale modelingLeverage (statistics)Physical lawFunction (engineering)Machine learningMultidisciplinary approachArtificial intelligenceComplement (complexity)MultimodalityBehavioural sciences

摘要: … thoroughly test the predictive power of models built with machine learning algorithms? The … , they are at a high risk of overfitting and generating non-physical predictions. Ultimately, our …

参考文章(88)
Babak Alipanahi, Andrew Delong, Matthew T Weirauch, Brendan J Frey, Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning Nature Biotechnology. ,vol. 33, pp. 831- 838 ,(2015) , 10.1038/NBT.3300
B. A. Le, J. Yvonnet, Q.-C. He, Computational homogenization of nonlinear elastic materials using neural networks International Journal for Numerical Methods in Engineering. ,vol. 104, pp. 1061- 1084 ,(2015) , 10.1002/NME.4953
Marc C. Kennedy, Anthony O'Hagan, Bayesian Calibration of computer models Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 63, pp. 425- 464 ,(2001) , 10.1111/1467-9868.00294
D. Ambrosi, G.A. Ateshian, E.M. Arruda, S.C. Cowin, J. Dumais, A. Goriely, G.A. Holzapfel, J.D. Humphrey, R. Kemkemer, E. Kuhl, J.E. Olberding, L.A. Taber, K. Garikipati, Perspectives on biological growth and remodeling Journal of The Mechanics and Physics of Solids. ,vol. 59, pp. 863- 883 ,(2011) , 10.1016/J.JMPS.2010.12.011
R.J. White, G.C.Y. Peng, S.S. Demir, Multiscale modeling of biomedical, biological, and behavioral systems (Part 1) [Introduction to the special issue] IEEE Engineering in Medicine and Biology Magazine. ,vol. 28, pp. 12- 13 ,(2009) , 10.1109/MEMB.2009.932388
Henry van den Bedem, James S Fraser, Integrative, dynamic structural biology at atomic resolution--it's about time. Nature Methods. ,vol. 12, pp. 307- 318 ,(2015) , 10.1038/NMETH.3324
Sandeep Madireddy, Bhargava Sista, Kumar Vemaganti, A Bayesian approach to selecting hyperelastic constitutive models of soft tissue Computer Methods in Applied Mechanics and Engineering. ,vol. 291, pp. 102- 122 ,(2015) , 10.1016/J.CMA.2015.03.012
G. Liang, K. Chandrashekhara, Neural network based constitutive model for elastomeric foams Engineering Structures. ,vol. 30, pp. 2002- 2011 ,(2008) , 10.1016/J.ENGSTRUCT.2007.12.021
Jay D. Humphrey, Eric R. Dufresne, Martin A. Schwartz, Mechanotransduction and extracellular matrix homeostasis Nature Reviews Molecular Cell Biology. ,vol. 15, pp. 802- 812 ,(2014) , 10.1038/NRM3896
Joseph Walpole, Jason A. Papin, Shayn M. Peirce, Multiscale Computational Models of Complex Biological Systems Annual Review of Biomedical Engineering. ,vol. 15, pp. 137- 154 ,(2013) , 10.1146/ANNUREV-BIOENG-071811-150104