To Cool is to Accrete: Analytic Scalings for Nebular Accretion of Planetary Atmospheres

作者: Eve J. Lee , Eugene Chiang

DOI: 10.1088/0004-637X/811/1/41

关键词: Radiative transferPlanetesimalAstrophysicsPlanetPhysicsMetallicityScalingOpacityMass ratioNebula

摘要: Planets acquire atmospheres from their parent circumstellar disks. We derive a general analytic expression for how the atmospheric mass grows with time $t$, as function of underlying core $M_{\rm core}$ and nebular conditions, including gas metallicity $Z$. accrete much can cool: an atmosphere's doubling is given by its Kelvin-Helmholtz time. Dusty behave differently made dust-free grain growth sedimentation. The gas-to-core ratio (GCR) dusty atmosphere scales GCR $\propto t^{0.4} M_{\rm core}^{1.7} Z^{-0.4} \mu_{\rm rcb}^{3.4}$, where $\mu_{\rm rcb} \propto 1/(1-Z)$ (for $Z$ not too close to 1) mean molecular weight at innermost radiative-convective boundary. This scaling applies across all orbital distances conditions atmospheres; boundaries, which regulate cooling, are set external environment, but rather internal microphysics dust sublimation, H$_2$ dissociation, formation H$^-$. By contrast, have radiative boundaries temperatures $T_{\rm rcb}$ out}$, grow faster larger cooler temperatures, extension lower opacities, prevail. At 0.1 AU in gas-poor nebula, T_{\rm rcb}^{-1.9} core}^{1.6} rcb}^{3.3}$, while beyond 1 gas-rich rcb}^{-1.5} core}^1 Z^{-0.4}\mu_{\rm rcb}^{2.2}$. confirm our scalings against detailed numerical models objects ranging Mars (0.1 $M_\oplus$) most extreme super-Earths (10-20 $M_\oplus$), explain why heating planetesimal accretion cannot prevent latter undergoing runaway accretion.

参考文章(49)
Pawel Artymowicz, Jeffrey Fung, Yanqin Wu, The 3D Flow Field Around an Embedded Planet arXiv: Earth and Planetary Astrophysics. ,(2015) , 10.1088/0004-637X/811/2/101
James E. Owen, Yanqin Wu, Atmospheres of low-mass planets: the "boil-off" arXiv: Earth and Planetary Astrophysics. ,(2015) , 10.3847/0004-637X/817/2/107
Peter Bodenheimer, Jack J. Lissauer, Accretion and Evolution of ~2.5 Earth-mass Planets with Voluminous H/He Envelopes arXiv: Earth and Planetary Astrophysics. ,(2014) , 10.1088/0004-637X/791/2/103
Rebekah I. Dawson, Eugene Chiang, Eve J. Lee, A Metallicity Recipe for Rocky Planets Monthly Notices of the Royal Astronomical Society. ,vol. 453, pp. 1471- 1483 ,(2015) , 10.1093/MNRAS/STV1639
Niraj K. Inamdar, Hilke E. Schlichting, The formation of super-Earths and mini-Neptunes with giant impacts Monthly Notices of the Royal Astronomical Society. ,vol. 448, pp. 1751- 1760 ,(2015) , 10.1093/MNRAS/STV030
Y. Hori, M. Ikoma, Gas giant formation with small cores triggered by envelope pollution by icy planetesimals Monthly Notices of the Royal Astronomical Society. ,vol. 416, pp. 1419- 1429 ,(2011) , 10.1111/J.1365-2966.2011.19140.X
Diana Valencia, Richard J. O'Connell, Dimitar Sasselov, Internal structure of massive terrestrial planets Icarus. ,vol. 181, pp. 545- 554 ,(2006) , 10.1016/J.ICARUS.2005.11.021
Yasunori Hori, Masahiro Ikoma, Masahiro Ikoma, IN SITU ACCRETION OF HYDROGEN-RICH ATMOSPHERES ON SHORT-PERIOD SUPER-EARTHS: IMPLICATIONS FOR THE KEPLER-11 PLANETS The Astrophysical Journal. ,vol. 753, pp. 66- ,(2012) , 10.1088/0004-637X/753/1/66
François Fressin, Guillermo Torres, David Charbonneau, Stephen T. Bryson, Jessie Christiansen, Courtney D. Dressing, Jon M. Jenkins, Lucianne M. Walkowicz, Natalie M. Batalha, THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS The Astrophysical Journal. ,vol. 766, pp. 81- ,(2013) , 10.1088/0004-637X/766/2/81