Expectation values of twist fields and universal entanglement saturation of the free massive boson

作者: Olivier Blondeau-Fournier , Benjamin Doyon

DOI: 10.1088/1751-8121/AA7492

关键词: Differential equationRenormalization groupQuantum field theoryQuantization (physics)Quantum entanglementTwistBosonContinuous symmetryPhysicsMathematical physics

摘要: The evaluation of vacuum expectation values (VEVs) in massive integrable quantum field theory (QFT) is a nontrivial renormalization-group "connection problem" -- relating large and short distance asymptotics general unsolved. This particularly relevant the context entanglement entropy, where VEVs branch-point twist fields give universal saturation predictions. We propose new method to compute associated continuous symmetries QFT. based on differential equation symmetry parameter, gives as infinite form-factor series which truncate at two-particle level free verify by studying U(1) models, are simply related fields. provide first exact formulae for such uncompactified boson model, checking against an independent calculation angular quantization. show that logarithmic terms, overlooked original work Callan Wilczek [Phys. Lett. B333 (1994)], appear both massless situations. implies that, agreement with numerical observations Bianchini Castro-Alvaredo [Nucl. Phys. B913 (2016)], standard power-law short-distance behavior corrected factor. discuss how this entropy single interval near-critical harmonic chains, including log corrections.

参考文章(72)
Philippe Flajolet, Robert Sedgewick, Analytic Combinatorics Cambridge University Press. ,(2009) , 10.1017/CBO9780511801655
N. Iorgov, O. Lisovyy, O. Gamayun, How instanton combinatorics solves Painlev\'e VI, V and III's arXiv: High Energy Physics - Theory. ,(2013) , 10.1088/1751-8113/46/33/335203
G. Vidal, J. I. Latorre, E. Rico, Ground state entanglement in quantum spin chains Quantum Information & Computation. ,vol. 4, pp. 48- 92 ,(2004) , 10.5555/2011572.2011576
Shashank Virmani, Martin B. Plbnio, An introduction to entanglement measures Quantum Information & Computation. ,vol. 7, pp. 1- 51 ,(2007) , 10.5555/2011706.2011707
L. BORISOV, M. B. HALPERN, C. SCHWEIGERT, Systematic Approach to Cyclic Orbifolds International Journal of Modern Physics A. ,vol. 13, pp. 125- 168 ,(1998) , 10.1142/S0217751X98000044
Alexander Zamolodchikov, Alexander Zamolodchikov, Alexei Zamolodchikov, Sergei Lukyanov, Sergei Lukyanov, Vladimir Fateev, Vladimir Fateev, Expectation values of local fields in the Bullough-Dodd model and integrable perturbed conformal field theories Nuclear Physics. ,vol. 516, pp. 652- 674 ,(1998) , 10.1016/S0550-3213(98)00002-9
John Palmer, Determinants of Cauchy-Riemann operators as τ-functions Acta Applicandae Mathematicae. ,vol. 18, pp. 199- 223 ,(1990) , 10.1007/BF00049126
Pasquale Calabrese, John Cardy, Erik Tonni, Entanglement negativity in quantum field theory Physical Review Letters. ,vol. 109, pp. 130502- ,(2012) , 10.1103/PHYSREVLETT.109.130502