Ideals Generated by Principal Minors

作者: Ashley K. Wheeler

DOI:

关键词: MathematicsAlgebraically closed fieldQuotient ringCodimensionComplete intersectionMinor (linear algebra)Polynomial ringDomain (ring theory)Ideal (ring theory)Discrete mathematics

摘要: A minor is principal means it defined by the same row and column indices. Let $X$ be a square generic matrix, $K[X]$ polynomial ring in entries of $X$, over an algebraically closed field, $K$. For fixed $t\leq n$, let $\mathfrak P_t$ denote ideal generated size $t$ minors $X$. When $t=2$ resulting quotient $K[X]/\mathfrak P_2$ normal complete intersection domain. $t>2$ we break problem into cases depending on rank, $r$, We show when $r=n$ for any $t$, respective images P_{n-t}$ localized ring, where invert $\det X$, are isomorphic. From that algebraic set given P_{n-1}$ has codimension $n$ component, plus 4 component determinantal (which all submaximal $X$). $n=4$ two components linked, prove some consequences.

参考文章(17)
R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups Compositio Mathematica. ,vol. 38, pp. 311- 327 ,(1979)
Allen Knutson, Some schemes related to the commuting variety Journal of Algebraic Geometry. ,vol. 14, pp. 283- 294 ,(2005) , 10.1090/S1056-3911-04-00389-3
E. B. Stouffer, On the independence of principal minors of determinants Transactions of the American Mathematical Society. ,vol. 26, pp. 356- 368 ,(1924) , 10.1090/S0002-9947-1924-1501282-2
Joe Harris, Loring W. Tu, On symmetric and skew-symmetric determinantal varieties Topology. ,vol. 23, pp. 71- 84 ,(1984) , 10.1016/0040-9383(84)90026-0
Murray Gerstenhaber, On Dominance and Varieties of Commuting Matrices The Annals of Mathematics. ,vol. 73, pp. 324- ,(1961) , 10.2307/1970336
Melvin Hochster, Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem Journal of the American Mathematical Society. ,vol. 3, pp. 31- 116 ,(1990) , 10.1090/S0894-0347-1990-1017784-6
Torgny Svanes, Coherent cohomology on schubert subschemes of flag schemes and applications Advances in Mathematics. ,vol. 14, pp. 369- 453 ,(1974) , 10.1016/0001-8708(74)90039-5
C. De Concini, C. Procesi, A characteristic free approach to invariant theory Advances in Mathematics. ,vol. 21, pp. 330- 354 ,(1976) , 10.1016/S0001-8708(76)80003-5
Olga Holtz, Bernd Sturmfels, Hyperdeterminantal relations among symmetric principal minors Journal of Algebra. ,vol. 316, pp. 634- 648 ,(2007) , 10.1016/J.JALGEBRA.2007.01.039
V. Baranovsky, The variety of pairs of commuting nilpotent matrices is irreducible Transformation Groups. ,vol. 6, pp. 3- 8 ,(2001) , 10.1007/BF01236059